精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和Sn满足Sn=
4
3
an-
1
3
×2n+1+
2
3
(n∈N*),
(Ⅰ)求a1及数列{an}的通项公式;
(Ⅱ)记bn=
2n
Sn
(n∈N*)证明:b1+b2+…+bn
3
2
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得a1=2,得an=4an-1+2n,由此能推导出{an+2n}是首项为4,公比为4的等比数列,从而得到an=4n-2n
(Ⅱ)由an=4n-2n.得Sn=
2(2n+1-1)(2n-1)
3
,bn=
2n
Sn
=
3
2
(
1
2n-1
-
1
2n+1-1
)
,由此能证明b1+b2+…+bn
3
2
解答: (Ⅰ)解:∵数列{an}的前n项和Sn满足Sn=
4
3
an-
1
3
×2n+1+
2
3
(n∈N*),
a1=S1=
4
3
a1-
1
3
×22+
2
3
,解得a1=2,
n≥2时,an=Sn-Sn-1=
4
3
an-
4
3
an-1
-
1
3
×2n

整理,得an=4an-1+2n
an+2n=4(an-1+2n-1)a1+21=4
∴{an+2n}是首项为4,公比为4的等比数列,
an+2n=4n
an=4n-2n
(Ⅱ)证明:∵an=4n-2n
∴Sn=
4
3
an-
1
3
×2n+1+
2
3
=
2(2n+1-1)(2n-1)
3

∴bn=
2n
Sn
=
3
2
(
1
2n-1
-
1
2n+1-1
)

∴b1+b2+…+bn=
3
2
(
1
2-1
-
1
2n+1-1
)
3
2
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=x2-2ax,x∈[0,4)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且
BG
GC
=
DH
HC
=2
,求证:EG,FH,AC相交于同一点P.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(Ⅰ)求平面ABCD与平面A1BE所成二面角的平面角的正弦值;
(Ⅱ)请问:在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+
b
x
+5(其中常数a,b∈R)满足f(2)+f(-2)=26.
(1)若f(-1)=-2000,求f(1);
(2)若b=-3,证明:f(x)恰有一个零点.
(3)若函数φ(x)=xf(x)+2x+2-x(x∈(0,1))的值域为(0,
15
2
),求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x、y的二元一次方程组
2x+ty=3
(t-1)x+y=t-2
(t∈R)有无穷多组解,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1的底面ABC是等腰直角三角形,AB=AC=1,侧棱AA1⊥底面ABC,且AA1=2,E是BC的中点.
(1)求直三棱柱ABC-A1B1C1的全面积;
(2)求异面直线AE与A1C所成角θ的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
3
sin2x+sinxcosx,求f(
π
6
).

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的多项式f(x)=1-x+x2-x3+x4…-x19+x20表示为关于y的多项式g(y)=a0+a1y+a2y2+…+a19y19+a20y20,其中y=x-4,则a0+…+a20=
 

查看答案和解析>>

同步练习册答案