精英家教网 > 高中数学 > 题目详情
17.下列说法正确的是(  )
A.?x,y∈R,若x+y≠0,则x≠1且y≠-1
B.a∈R,“$\frac{1}{a}$<1“是“a>1“的必要不充分条件
C.命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.“若am2<bm2,则a<b”的逆命题为真命题

分析 判断原命题逆否命题的真假,可判断A;根据充要条件的定义,可判断B;写出原命题的否定,可判断C;写出原命题的逆命题,可判断D.

解答 解:?x,y∈R,若x+y≠0,则x≠1且y≠-1的逆否命题为:?x,y∈R,若x=1或y=-1,则x+y=0,为假命题,故A错误;
a∈R,“$\frac{1}{a}$<1”?“a<0,或a>1”是“a>1”的必要不充分条件,故B正确;
命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3≥0”,故C错误;
“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,故D错误;,
故选:B

点评 本题以命题的真假判断与应用为载体,考查四种命题,命题的否定,不等式的基本性质,充要条件等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,∠BAC=$\frac{2π}{3}$,P为∠BAC内部一点,过点P的直线与∠BAC的两边交于点B,C,且PA⊥AC,AP=$\sqrt{3}$.
(Ⅰ)若AB=3,求PC;
(Ⅱ)求$\frac{1}{PB}$$+\frac{1}{PC}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)=$\sqrt{x}$的图象在点(1,1)处的切线为l,则曲线y=f(x),直线l及x轴所围成的图形的面积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,A,B,C对应边分别为a,b,c,且a=1,b=$\sqrt{2},A={30°}$,则B=45°或135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-1}$},则集合A∩B为(  )
A.{1,2}B.{1,2,3}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,A、B、C的对边分别为a、b、c,若B=$\frac{π}{3}$,b=6,sinA-2sinC=0,则a=(  )
A.3B.2$\sqrt{3}$C.4$\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$f(log23)的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入x的值为1,输出n的值为N,则在区间[-1,4]上随机选取一个数M,M≥N-1的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足$\left\{\begin{array}{l}{x-y≤10}\\{0≤x+y≤20}\\{0≤y≤15}\end{array}\right.$,则2x+3y的最大值为55.

查看答案和解析>>

同步练习册答案