精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x<4}\\{1+{2}^{x-1},x≥4}\end{array}\right.$,则f(0)+f(log232)=(  )
A.19B.17C.15D.13

分析 利用函数的解析式,真假求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x<4}\\{1+{2}^{x-1},x≥4}\end{array}\right.$,
则f(0)+f(log232)=log24+1+${2}^{lo{g}_{2}32-1}$=2+1+$\frac{1}{2}×32$=19.
故选:A.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,M,N分别为PD,PC上的点,且$\frac{PM}{MD}$=$\frac{PN}{NC}$,求证:MN∥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设x,y为实数,若4x2+2xy+3y2=1,则2x-y的最大值和最小值,并说明取得最值时的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}满足:2a1+22a2+23a3+…+2nan=(n+1)2(n∈N*),则数列{an}的前n项和为 Sn=$\frac{11}{2}$-$\frac{2n+5}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆(x-2)2+y2=5与直线y=2x+1的位置关系是(  )
A.相交B.相切C.相离D.直线过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直角坐标系xOy中,点P(1,2)到抛物线E:y2=2px(p>0)的焦点的距离为$\sqrt{5}$,过抛物线E的焦点F作两条相互垂直的直线分别交抛物线于A,B,C,D四点.
(1)求抛物线C的方程;
(2)求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足z-i=iz+3,则$\overline{z}$=(  )
A.1+2iB.1-2iC.2+2iD.2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的五面体中,四边形ABCD是矩形,平面ADF⊥平面ABEF,且AB∥EF,AB=$\frac{1}{2}$EF=2$\sqrt{2}$,AF=BE=2,M是EF的中点,N在AM上.
(I)求证:DN∥平面BCE;
(Ⅱ)求证:平面ABEF⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,则f(f($\frac{π}{2}$))等于(  )
A.-$\frac{1}{{e}^{2}}$B.$\frac{1}{{e}^{2}}$C.-e2D.e2

查看答案和解析>>

同步练习册答案