【题目】已知直线过点,圆:.
(1)当直线与圆相切时,求直线的一般方程;
(2)若直线与圆相交,且弦长为,求直线的一般方程.
【答案】(1)或(2);
【解析】
(1)把圆的一般式化为标准方程,讨论直线斜率存在或不存在时是否与圆相切的情况。当不存在时,可直接判断相切;当斜率存在时,利用点斜式表示出直线方程,结合点到直线的距离即可求得斜率k,进而得到直线方程。
(2)根据弦长与半径,求得圆心到直线的距离;利用点斜式设出直线方程,根据点到直线距离即可求得斜率k,进而得到直线方程。
解:(1)将圆的一般方程化为标准方程得,
所以圆的圆心为,半径为1,
因为直线过点,所以当直线的斜率不存在时,直线与圆相切,
此时直线的方程为;
当直线的斜率存在时,设斜率为,则直线的方程为,
化为一般式为。
因为直线与圆相切,所以,得,
此时直线的方程为
综上所述,直线方程为或
(2)因为弦长为,所以圆心到直线的距离为,
此时直线的斜率一定存在,设直线的方程为,圆心到直线的距离,
由,得,
所以
当时,直线的一般方程为;
当时,直线的一般方程为
科目:高中数学 来源: 题型:
【题目】已知函数(其中为自然对数的底, )的导函数为.
(1)当时,讨论函数在区间上零点的个数;
(2)设点, 是函数图象上两点,若对任意的,割线的斜率都大于,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在某商业区周边有 两条公路和,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与,分别交于,要求与扇形弧相切,切点不在,上.
(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;
(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,为坐标原点,为椭圆的左焦点,离心率为,直线与椭圆相交于,两点.
(1)求椭圆的方程;
(2)若是弦的中点,是椭圆上一点,求的面积最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车快.若每人离开甲地的距离与所用时间的函数用图象表示,则甲、乙对应的图象分别是
A.甲是(1),乙是(2)B.甲是(1),乙是(4)
C.甲是(3),乙是(2)D.甲是(3),乙是(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com