精英家教网 > 高中数学 > 题目详情
8.实数x,y,k满足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{x≤k}\end{array}\right.$,z=x2+y2,若z的最大值为13,则k的值为2.

分析 作出不等式组对应的平面区域,利用z的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域如图;则k>1,
则z的几何意义是区域内的点到原点的距离的平方,
由图象知,O到A的距离最大,
∵z=x2+y2的最大值为13,
∴O到A的距离最大为d=$\sqrt{13}$,
由$\left\{\begin{array}{l}{x=k}\\{x-y+1=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x=k}\\{y=k+1}\end{array}\right.$,
即A(k,k+1),
则OA=$\sqrt{{k}^{2}+(k+1)^{2}}$=$\sqrt{13}$,
即2k2+2k+1=13,
即k2+k-6=0,解得k=2或k=-3(舍),
故k=2,
故答案为:2

点评 本题主要考查线性规划以及点到直线的距离的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-5≤0}\\{x+y-4≥0}\end{array}\right.$.
(1)求x2+y2的最大值和最小值;
(2)求z=$\frac{y-1}{x+1}$的取值范围;
(3)求z=|x+2y-4|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数$f(x)=\sqrt{|x+1|+|x+2|-a}$.
(1)a=5,函数f(x)的定义域A;
(2)设B={x|-1<x<2},当实数a,b∈(B∩CRA)时,证明:$\frac{|a+b|}{2}<|1+\frac{ab}{4}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx.
(1)方程f(x+a)=x有且只有一个实数解,求a的值;
(2)若函数$g(x)=f(x)+\frac{1}{2}{x^2}-mx(m≥\frac{5}{2})$的极值点x1,x2(x1<x2)恰好是函数h(x)=f(x)-cx2-bx的零点,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}和{bn}对任意的n∈N*满足${a_1}{a_2}…{a_n}={3^{{b_n}-n}}$,若数列{an}是等比数列,且a1=1,b2=b1+2.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{1}{a_n}-\frac{1}{b_n}(n∈{N^*})$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xoy中,圆C的参数方程$\left\{\begin{array}{l}x=1+2cosφ\\ y=2sinφ\end{array}\right.(φ$为参数).以o为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)若将圆C向左平移一个单位,再经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$得到曲线C′,设M(x,y)为曲线C′上任一点,求x2-$\sqrt{3}$xy+2y2的最小值,并求相应点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知抛物线是的焦点F恰好是双曲线$\frac{x^2}{a^2}$-$\frac{{y{\;}^2}}{b^2}$=1的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为(  )
A.$\sqrt{2}$+1B.2C.$\sqrt{2}$D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.原点与极点重合,x轴正半轴与极轴重合,则直角坐标为$(-2,-2\sqrt{3})$的点的极坐标是(  )
A.$(4,\frac{π}{3})$B.(4,$\frac{4π}{3}$)C.(-4,-$\frac{2π}{3}$)D.$(4,\frac{2π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个大风车的半径为8m,12min旋转一周,它的最低点P0离地面2m,风车翼片的一个端点P从P0开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是(  )
A.h(t)=-8sin$\frac{π}{6}$t+10B.h(t)=-cos$\frac{π}{6}$t+10C.h(t)=-8sin$\frac{π}{6}$t+8D.h(t)=-8cos$\frac{π}{6}$t+10

查看答案和解析>>

同步练习册答案