精英家教网 > 高中数学 > 题目详情
18.一个大风车的半径为8m,12min旋转一周,它的最低点P0离地面2m,风车翼片的一个端点P从P0开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是(  )
A.h(t)=-8sin$\frac{π}{6}$t+10B.h(t)=-cos$\frac{π}{6}$t+10C.h(t)=-8sin$\frac{π}{6}$t+8D.h(t)=-8cos$\frac{π}{6}$t+10

分析 由题意可设h(t)=Acosωt+B,根据周期性$\frac{2π}{ω}$=12,与最大值与最小值分别为18,2.即可得出.

解答 解:设h(t)=Acosωt+B,
∵12min旋转一周,
∴$\frac{2π}{ω}$=12,
∴ω=$\frac{π}{6}$.
由于最大值与最小值分别为18,2.
∴$\left\{\begin{array}{l}{-A+B=18}\\{A+B=2}\end{array}\right.$,解得A=-8,B=10.
∴h(t)=-8cos$\frac{π}{6}$t+10.
故选:D.

点评 本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.实数x,y,k满足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{x≤k}\end{array}\right.$,z=x2+y2,若z的最大值为13,则k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数a,b,c满足a>0,b>0,c>0,且abc=1.
(Ⅰ)证明:(1+a)(1+b)(1+c)≥8;
(Ⅱ)证明:$\sqrt{a}+\sqrt{b}+\sqrt{c}≤\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,则目标函数z=x2+y2的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+|x+1-a|,其中a为实常数,在x(-$\frac{1}{2}$,$\frac{1}{2}$)单调递增,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}满足a1=1,a2=$\frac{1}{2}$,并且an(an-1+an+1)=2an+1an-1(n≥2),则该数列的第2015项为(  )
A.$\frac{1}{2014}$B.$\frac{1}{{2}^{2014}}$C.$\frac{1}{2015}$D.$\frac{1}{{2}^{2015}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,$\sqrt{2}$),且离心率等于$\frac{{\sqrt{3}}}{2}$,过点M(0,2)的直线l与椭圆相交于P,Q不同两点,点N在线段PQ上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设$\overrightarrow{PM}$=-λ$\overrightarrow{PN}$,$\overrightarrow{MQ}$=λ$\overrightarrow{NQ}$,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若执行如图所示的程序框图,则输出的i的值为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正△ABC的边长为1,用斜二侧画法画出它的直观图的面积是$\frac{\sqrt{6}}{16}$.

查看答案和解析>>

同步练习册答案