精英家教网 > 高中数学 > 题目详情
17.原点与极点重合,x轴正半轴与极轴重合,则直角坐标为$(-2,-2\sqrt{3})$的点的极坐标是(  )
A.$(4,\frac{π}{3})$B.(4,$\frac{4π}{3}$)C.(-4,-$\frac{2π}{3}$)D.$(4,\frac{2π}{3})$

分析 根据极坐标公式,求出ρ、θ即可.

解答 解:∵x=-2,y=-2$\sqrt{3}$;
∴ρ=$\sqrt{{x}^{2}{+y}^{2}}$=$\sqrt{{(-2)}^{2}{+(-2\sqrt{3})}^{2}}$=4;
又x=ρcosθ=-2,∴cosθ=-$\frac{2}{ρ}$=-$\frac{1}{2}$,
且θ为第三象限角,
∴θ=$\frac{4π}{3}$;
∴该点的极坐标为(4,$\frac{4π}{3}$).
故选:B.

点评 本题考查了极坐标方程的应用问题,解题时应熟记极坐标与普通方程的互化,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=2对称,则f(x)的最大值是(  )
A.9B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.实数x,y,k满足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{x≤k}\end{array}\right.$,z=x2+y2,若z的最大值为13,则k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|$\frac{x}{x-1}$≥0,x∈R},B={y|y=2x+1,x∈R},则A∩B=(  )
A.(1,+∞)B.(-∞,0)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=log3x-1$\frac{\sqrt{2x+3}}{x-1}$的定义域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(Ⅰ)将直线l的参数方程和圆C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l和曲线C相交于A、B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数a,b,c满足a>0,b>0,c>0,且abc=1.
(Ⅰ)证明:(1+a)(1+b)(1+c)≥8;
(Ⅱ)证明:$\sqrt{a}+\sqrt{b}+\sqrt{c}≤\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,则目标函数z=x2+y2的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若执行如图所示的程序框图,则输出的i的值为(  )
A.8B.7C.6D.5

查看答案和解析>>

同步练习册答案