精英家教网 > 高中数学 > 题目详情
4.在直角坐标平面内,过定点P的直线l:ax+y-1=0与过定点Q的直线m:x-ay+3=0相交于点M,则|MP|2+|MQ|2的值为(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.5D.10

分析 由已知得P(0,1),Q(-3,0),过定点P的直线ax+y-1=0与过定点Q的直线x-ay+3=0垂直,M位于以PQ为直径的圆上,由此能求出|MP|2+|MQ|2的值即可.

解答 解:∵在平面内,过定点P的直线ax+y-1=0与过定点Q的直线x-ay+3=0相交于点M,
∴P(0,1),Q(-3,0),
∵过定点P的直线ax+y-1=0与过定点Q的直线x-ay+3=0垂直,
∴M位于以PQ为直径的圆上,
∵|PQ|=$\sqrt{9+1}$=$\sqrt{10}$,
∴|MP|2+|MQ|2=10,
故选:D.

点评 本题考查两线段乘积的最大值的求法,是中档题,解题时要认真审题,注意两点间距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.据统计,夏季期间某旅游景点每天的游客人数服从正态分布N(1000,1002),则在此期间的某一天,该旅游景点的人数不超过1300的概率为(  )
附:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.
A.0.4987B.0.8413C.0.9772D.0.9987

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={x∈R|x2<3x},B={x|-1<x<2},则A∪B=(  )
A.{x|-1<x<0}B.{x|-1<x<3}C.{x|0<x<2}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算$\lim_{n→∞}\frac{1+2+3+…+n}{{{n^2}+1}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一组样本数据的频率分布直方图如图所示,试估计样本数据的中位数为(  )
A.$\frac{100}{9}$B.11.52C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设随机变量X~(2,σ2),若P(4-a<X<a)=0.8(a>2),则P(X>a)的值为0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\frac{lnx}{x}$,g(x)=$\frac{1}{2}$mx-$\frac{1}{x}$+m-1(m为整数)
(1)求曲线y=f(x)在点($\frac{1}{e}$,f($\frac{1}{e}$))处的切线方程;
(2)求函数y=g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x>0,y>0,且x=4xy-2y,则3x+2y的最小值为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$cosωx),其中ω>0,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为$\frac{π}{6}$,求ω的最小值.

查看答案和解析>>

同步练习册答案