精英家教网 > 高中数学 > 题目详情
12.计算$\lim_{n→∞}\frac{1+2+3+…+n}{{{n^2}+1}}$=$\frac{1}{2}$.

分析 将1+2+3+…+n=$\frac{n(n-1)}{2}$的形式,在利用洛必达法则,求极限值.

解答 解:原式=$\underset{lim}{n→∞}$$\frac{\frac{n(n+1)}{2}}{{n}^{2}+1}$=$\underset{lim}{n→∞}$=$\frac{n+1}{2n}$=$\frac{1}{2}$
故答案为:$\frac{1}{2}$

点评 本题考查等差数列求前n项和的公式,再求数列极限,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图为教育部门对辖区内某学校的50名儿童的体重(kg)作为样本进行分析而得到的频率分布直方图,则这50名儿童的体重的平均数为(  )
A.27.5B.26.5C.25.6D.25.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=log${\;}_{\frac{1}{2}}$x+x-a,则“a∈(1,3)”是“函数f(x)在(2,8)上存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|0<x<3},B={x|x-2>0},则集合A∩B=(  )
A.{x|0<x<2}B.{x|2<x<3}C.{x|x>2}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}和等比数列{bn}的首项都是1,公差公比都是2,则b${\;}_{{a}_{1}}$b${\;}_{{a}_{3}}$b${\;}_{{a}_{5}}$=(  )
A.64B.32C.256D.4096

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在直角坐标平面内,过定点P的直线l:ax+y-1=0与过定点Q的直线m:x-ay+3=0相交于点M,则|MP|2+|MQ|2的值为(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={1,2,4,5,6},B={4,5,6,7},求满足S⊆A.且S∩B≠∅的集合的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=$\frac{1}{2}$sin2xsin$\frac{π}{3}$+cos2xcos$\frac{π}{3}$$-\frac{1}{2}$sin($\frac{π}{2}+\frac{π}{3}$)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,则函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值分别为(  )
A.$\frac{1}{2}$,$-\frac{1}{2}$B.$\frac{1}{4}$,$-\frac{1}{4}$C.$\frac{1}{2}$,-$\frac{1}{4}$D.$\frac{1}{4}$,-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案