精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A,B,C所对的边分别为a,b,c,已知(2c-a)cosB=bcosA,且b=6.
(1)求角B的大小;
(2)设△ABC的两条中线AE、CF相交于点D,求四边形BEDF面积的最大值.

分析 (1)由题意和正弦定理以及三角函数公式可得cosB=$\frac{1}{2}$,可得B=$\frac{π}{3}$;
(2)由余弦定理和基本不等式可得ac≤36,由重心的性质和不等式的性质可得.

解答 解:(1)∵在△ABC中(2c-a)cosB=bcosA,
∴由正弦定理可得(2sinC-sinA)cosB=sinBcosA,
∴2sinCcosB=sinAcosB+sinBcosA=sin(A+B),
∴2sinCcosB=sinC,约去sinC可得cosB=$\frac{1}{2}$,
∴B=$\frac{π}{3}$;
(2)由余弦定理可得36=a2+c2-2accosB=a2+c2-ac≥2ac-ac,
∴ac≤36,当且仅当a=c=6时取等号,如图D为△ABC重心,
∴四边形BEDF面积S=$\frac{1}{3}$S△ABC=$\frac{1}{6}$acsinB=$\frac{\sqrt{3}}{12}$ac≤3$\sqrt{3}$,
∴四边形BEDF面积的最大值为3$\sqrt{3}$,

点评 本题考查正余弦定理解三角形,涉及三角函数公式和三角形的面积公式以及重心的性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ex-ax在(3,+∞)单调递增,则实数a的取值范围是(-∞,e3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知椭圆E:$\frac{x^2}{16}+\frac{y^2}{12}$=1和抛物线C:y2=8x,A,B是C的准线与E的两个交点,则|AB|=(  )
A..3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,右焦点为($\sqrt{2}$,0).
(1)求椭圆C的方程;
(2)若过原点O作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值;
(3)在(2)的条件下,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b∈(0,1),则函数f(x)=ax2-4bx+1在区间[1,+∞)上是增函数的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}中,a1=1,an+1=2an+1(n∈N*),则数列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$的各项和为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若偶函数f(x)在(-∞,0]上单调递减,a=f(log23),b=f(-1),c=f(2${\;}^{\frac{3}{2}}$),则a,b,c满足(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点是(-$\sqrt{3}$,0)、($\sqrt{3}$,0),且椭圆经过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点,且以AB为直径的圆过椭圆右顶点M,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到g(x)的图象,若g(x)的图象关于直线x=$\frac{π}{3}$对称,则φ的最小值为(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案