分析 据点P是△ABC内一点(不包括边界),向量加法的平行四边形法则得m,n的范围,据两点距离公式的几何意义,用线性规划求出最值.
解答
解:∵点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{m>0}\\{n>0}\\{m+n<1}\end{array}\right.$,
做出不等式组表示的平面区域如图,设N(2,2),
则N到平面区域的最短距离为NM=$\frac{|2+2-1|}{\sqrt{2}}$=$\frac{3}{\sqrt{2}}$,则N到平面区域的最长距离为ON=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$.
∴(m-2)2+(n-2)2的最小值为$\frac{9}{2}$,最大值为8.
故答案为($\frac{9}{2}$,8).
点评 本题考查了平面向量在几何中的应用,使用线性规划寻找最值是关键.
科目:高中数学 来源: 题型:选择题
| A. | 当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2 | |
| B. | 当x>0时,$\sqrt{x}+\frac{1}{{\sqrt{x}}}$≥2 | |
| C. | 当x≥2时,x+$\frac{1}{x}$的最小值为2 | |
| D. | 当$x∈(0,\frac{π}{2}]$时,f(x)=sinx+$\frac{4}{sinx}$的最小值是4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A?B | B. | A=B | C. | A∩B=B | D. | A∪B=(0,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com