精英家教网 > 高中数学 > 题目详情
7.p:x2-3x+2≤0成立的一个必要不充分条件是(  )
A.x>1B.x≥1C.1≤x≤2D.1<x<2

分析 求出不等式的等价条件,结合必要不充分条件的定义进行判断即可.

解答 解:由x2-3x+2≤0得1≤x≤2,
则p的必要不充分条件是x≥1,
故选:B.

点评 本题主要考查充分条件和必要条件的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前n项和为Sn,a1=1,Sn=3an+1-3,则an=(  )
A.${({\frac{4}{3}})^{n-1}}$B.${({\frac{3}{4}})^{n-1}}$C.3n-1D.${({\frac{1}{3}})^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知某圆锥曲线和椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1有相同的焦点,且经过圆(x-4)2+(y+$\sqrt{15}$)2=64的圆心,求此圆锥曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=a2x2(a>0),$g(x)=\sqrt{9-{{(x-b)}^2}}$.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为$\sqrt{2}$,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设$a=\frac{{\sqrt{2}}}{2}$,$b=\frac{{5\sqrt{3}}}{2}$,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)和函数g(x)满足f(x)=g(x)+m,(m∈R),其中g(x)=$\frac{2}{{4}^{x}-1}$;
(I)若函数f(x)是奇函数,求常数m的值;
(II)求g(-2015)+g(-2014)+…+g(-2)+g(-1)+g(1)+g(2)+…+g(2014)+g(2015)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC},m,n∈R$,则(m-2)2+(n-2)2的取值范围是($\frac{9}{2}$,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数$f(x)=\frac{1}{{\sqrt{a{x^2}-ax+1}}}$的定义域为R,则a的取值范围是(  )
A.(-4,0]B.(-4,0)C.(0,4]D.[0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某校有高中生900名,其中高一年级300人,高二年级200人,高三年级400人,用分层抽样的方法抽取一个容量为45的样本,则高三年级应抽取(  )
A.25人B.15 人C.30 人D.20人

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a,b∈R且$\left\{\begin{array}{l}{(a+1)^{5}+2015(a+1)=-1}\\{(b+1)^{5}+2015(b+1)=1}\end{array}\right.$,则a+b=-2.

查看答案和解析>>

同步练习册答案