精英家教网 > 高中数学 > 题目详情
12.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

分析 由已知中的三视图可得:该几何体是一个以侧视图中右下角的三角形为底面的三棱锥,代入棱锥体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以侧视图中右下角的三角形为底面的三棱锥,
其底面面积S=$\frac{1}{2}$×2×2=2,高h=2,
故棱锥的体积V=$\frac{1}{3}×2×2$=$\frac{4}{3}$,
故选:D.

点评 本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=ax-\frac{1}{2}{x^2}-4lnx$在区间[1,+∞)上为减函数,则实数a的取值范围是(  )
A.(-∞,4)B.(-∞,4]C.(-∞,5)D.(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则其体积为(  )
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{π}{6}$C.$\frac{{\sqrt{3}π}}{6}$D.$\frac{{\sqrt{3}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知0<a1<a2<a3,则使得${({1-{a_i}x})^2}<1({i=1,2,3})$都成立的x的取值范围是(  )
A.$({0,\frac{1}{a_3}})$B.$({0,\frac{2}{a_3}})$C.$({0,\frac{1}{a_1}})$D.$({0,\frac{2}{a_1}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:
手机控非手机控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.456[0.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的体积为(  )
A.${\frac{5}{6}_{\;}}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在二项式${({\root{3}{x}-\frac{2}{x}})^n}$的展开式中,所有项的二项式系数之和为256,则常数项为112.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平面向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影为5,则$|\overrightarrow a-2\overrightarrow b|$的模为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于(  )
A.(-∞,-1]B.(-1,2)C.(-∞,-1]∪[2,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案