精英家教网 > 高中数学 > 题目详情
14.已知e为自然对数的底数,则曲线y=2ex在点(1,2e)处的切线斜率为2e.

分析 求函数的导数,利用导数的几何意义即可求出切线的斜率.

解答 解:曲线y=2ex的导数为:y′=2ex
曲线y=2ex在点(1,2e)处的切线斜率为:y′|x=1=2e1=2e,
故答案为:2e.

点评 本题主要考查函数切线斜率的求解,利用导数的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.A、B两站相距10千米,有两列火车匀速由A站开往B站,一辆慢车,从A站到B站需24分钟,另一列快车比慢车迟开6分钟,却早6分钟到达.
①试分别写出两车在此时间内离开A地的路程y(千米)关于慢车行驶时间x(分钟)的函数关系式;
②在同一坐标系中画出两函数的图象;
③求出两车在何时,离始发站多远相遇?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若sin(a-3π)=2cos(a-4π),则sin(π-a)+$\frac{6cos(2π-a)}{2cos(π+a)}$-sin(-a)=±$\frac{4\sqrt{5}}{5}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x}-1,0<x<1}\\{k-\frac{k}{x},x≥1}\end{array}\right.$.
(1)是否存在实数a,b(1≤a<b),使得函数y=f(x)的定义域、值域都是[a,b],如果存在,并求出a,b的值(用k表示);如果不存在,说明理由.
(2)若存在实数a,b(0<a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb],求m的取值范围(用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知曲线C的参数方程式:$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t是参数),直线l的极坐标方程式2pcosθ+psinθ-4=0.
(1)将曲线C的参数方程转化为普通方程,将直线l的极坐标方程化为直角坐标方程.
(2))若直线l与曲线C交于A,B,求AB中点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{ax}}{x}$(a∈R).
(1)若曲线f(x)在x=1的切线与直线x+e2y+1=0垂直,求曲线f(x)在x=1处的切线方程;
(2)若f(x)在[1,2]上最小值为e,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是首项为1的数列,且当n≥2时,$\frac{{S}_{n}}{n}$=$\frac{{S}_{n-1}}{n-1}$+$\frac{1}{2}$.
(1)证明:{an}是等差数列;
(2)若数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求T60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{5}$-1C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将正整数排成如图,其中排在第i行第j列的数若记为a${\;}_{i}^{j}$,例如a${\;}_{4}^{2}$=8,则a${\;}_{63}^{63}$=2016

查看答案和解析>>

同步练习册答案