精英家教网 > 高中数学 > 题目详情
5.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,则z=x+2y的最小值为-4.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值.

解答 解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点A时,直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z最小.
由$\left\{\begin{array}{l}{x-y+1=0}\\{x-2y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,
即A(-2,-1),
此时z的最小值为z=-2-2=-4,
故答案为:-4

点评 本题主要考查线性规划的应用,利用目标函数的几何意义以及利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(1)(用分析法证明)$\sqrt{3}+\sqrt{8}<2+\sqrt{7}$
(2)若a>0,b>0,c>0,且a+b+c=1求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}≥9$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)满足f(4)=2,且对于任意正数x1,x2,都有f(x1•x2)=f(x1)+f(x2)成立.则f(x)可能为(  )
A.$f(x)=\sqrt{x}$B.$f(x)=\frac{x}{2}$C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.三棱柱ABC-A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为边AB的中点,且CC1=2AB.
(1)求证:平面C1CD⊥平面ADC1
(2)求证:AC1∥平面CDB1
(3)求三棱锥D-CAB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=lnx-\frac{1}{2}{x^2}+\frac{a}{x}$(a∈R,a为常数),函数$g(x)={e^{1-x}}+\frac{2a-1}{2}{x^2}-1$(e为自然对数的底).
(1)讨论函数f(x)的极值点的个数;
(2)若不等式f(x)≤g(x)对x∈[1,+∞)恒成立,求实数的a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}+x$,a∈R.
(Ⅰ)当a=0时,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)令g(x)=f(x)-ax+1,求函数g(x)的极值;
(Ⅲ)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求直线GB与平面AEFG所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}$(a∈R).
(1)若f(x)在点(2,f(2))处的切线与直线2x+y+2=0垂直,求实数a的值;
(2)求函数f(x)的单调区间;
(3)讨论函数f(x)在区间[1,e2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆ax2+by2=1(a>0,b>0,且a≠b)与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2$\sqrt{2}$,直线OC的斜率为$\frac{\sqrt{2}}{2}$,求椭圆的方程.

查看答案和解析>>

同步练习册答案