1£®Î¢ÐÅÊÇÌÚѶ¹«Ë¾ÍƳöµÄÒ»ÖÖÊÖ»úͨѶÈí¼þ£¬Ò»¾­ÍƳö±ã·çÃÒÈ«¹ú£¬ÉõÖÁÓ¿ÏÖ³öÒ»ÅúÔÚ΢ÐŵÄÅóÓÑȦÄÚÏúÊÛÉÌÆ·µÄÈË£¨±»³ÆÎªÎ¢ÉÌ£©£®ÎªÁ˵÷²éÿÌì΢ÐÅÓû§Ê¹ÓÃ΢ÐŵÄʱ¼ä£¬Ä³¾­Ïú»¯×±Æ·µÄ΢ÉÌÔÚÒ»¹ã³¡Ëæ»ú²É·ÃÄÐÐÔ¡¢Å®ÐÔÓû§¸÷50Ãû£¬ÆäÖÐÿÌìÍæÎ¢Ðų¬¹ý6СʱµÄÓû§Îª¡°A×顱£¬·ñÔòΪ¡°B×顱£¬µ÷²é½á¹ûÈçÏ£º
A×éB×éºÏ¼Æ
ÄÐÐÔ262450
Å®ÐÔ302050
ºÏ¼Æ5644100
£¨¢ñ£©¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÄÜ·ñÓÐ60%µÄ°ÑÎÕÈÏΪ¡°A×顱Óû§Óë¡°ÐÔ±ð¡±Óйأ¿
£¨¢ò£©ÏÖ´Óµ÷²éµÄÅ®ÐÔÓû§Öа´·Ö²ã³éÑùµÄ·½·¨Ñ¡³ö5ÈËÔùËÍÓªÑøÃæÄ¤1·Ý£¬ÇóËù³éÈ¡5ÈËÖС°A×顱ºÍ¡°B×顱µÄÈËÊý£»£¨¢ó£©´Ó£¨¢ò£©ÖгéÈ¡µÄ5ÈËÖÐÔÙËæ»ú³éÈ¡3ÈËÔùËÍ200ÔªµÄ»¤·ôÆ·Ì××°£¬¼ÇÕâ3ÈËÖÐÔÚ¡°A×顱µÄÈËÊýΪX£¬ÊÔÇóXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+dΪÑù±¾ÈÝÁ¿£®
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©0.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

·ÖÎö £¨1£©ÓÉ2¡Á2ÁÐÁª±í£¬¼ÆËãK2£¬¶ÔÕÕÁÙ½çÖµ±íµÃ³ö½áÂÛ£»
£¨2£©¸ù¾Ý·Ö²ã³éÑù±ÈÀýÇó³öËù³éÈ¡µÄ5λŮÐÔÖУ¬A×é¡¢B×éÓ¦³éÈ¡µÄÈËÊý£»
£¨3£©XµÄËùÓпÉÄÜȡֵΪ1£¬2£¬3£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊ£¬Ð´³ö·Ö²¼ÁкÍÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©ÓÉ2¡Á2ÁÐÁª±í¿ÉµÃ
K2=$\frac{{n£¨ad-bc£©}^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
=$\frac{100{¡Á£¨26¡Á20-30¡Á24£©}^{2}}{56¡Á44¡Á50¡Á50}$¡Ö0.649£¼0.708£»
ûÓÐ60%µÄ°ÑÎÕÈÏΪ¡°A×顱Óû§Óë¡°ÐÔ±ð¡±Óйأ»
£¨2£©ÓÉÌâÒâµÃ£¬Ëù³éÈ¡µÄ5λŮÐÔÖУ¬
¡°A×顱ÓÐ5¡Á$\frac{30}{50}$=3ÈË£¬
¡°B×顱ÓÐ5¡Á$\frac{20}{50}$=2ÈË£»
£¨3£©XµÄËùÓпÉÄÜȡֵΪ1£¬2£¬3£¬
ÔòP£¨X=1£©=$\frac{{C}_{3}^{1}{•C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$£¬
P£¨X=2£©=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$£¬
P£¨X=3£©=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$£¬
ËùÓÐXµÄ·Ö²¼ÁÐΪ£º

X123
P$\frac{3}{10}$$\frac{3}{5}$$\frac{1}{10}$
ÆäÊýѧÆÚÍûΪEX=1¡Á$\frac{3}{10}$+2¡Á$\frac{3}{5}$+3¡Á$\frac{1}{10}$=$\frac{9}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÓë·Ö²ã³éÑùÔ­ÀíÒÔ¼°ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬ÊÇ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}ÊǷdz£ÖµÊýÁУ¬ÇÒÂú×ãan+2=2an+1-an£¨n¡ÊN*£©£¬ÆäǰnÏîºÍΪsn£¬Èôs5=70£¬a2£¬a7£¬a22³ÉµÈ±ÈÊýÁУ®
£¨ I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨ II£©ÉèÊýÁÐ$\left\{{\frac{1}{s_n}}\right\}$µÄǰnÏîºÍΪTn£¬ÇóÖ¤£º$\frac{1}{6}¡Ü{T_n}£¼\frac{3}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=alnx+x2-4x£¨a¡ÊR£©£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÈôA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x2£¾x1£¾0£©ÊÇÇúÏßy=f£¨x£©ÉϵÄÁ½µã£¬x0=$\frac{{x}_{1}+{x}_{2}}{2}$£¬ÎÊ£ºÊÇ·ñ´æÔÚa£¬Ê¹µÃÖ±ÏßABµÄбÂʵÈÓÚf¡ä£¨x0£©£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1ÓëÅ×ÎïÏßy2=2px£¨p£¾0£©½»ÓÚA¡¢BÁ½µã£¬|AB|=2£¬Ôòp=$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{e}^{x}+ax£¬x£¾0}\\{0£¬x=0}\\{{e}^{-x}-ax£¬x£¼0}\end{array}\right.$£¬Èôº¯Êýf£¨x£©ÓÐ5¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-$\frac{1}{e}$£©B£®£¨-¡Þ£¬-e£©C£®£¨e£¬+¡Þ£©D£®£¨$\frac{1}{e}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚ¸´Æ½ÃæÄÚ£¬¸´Êýz=$\frac{2i}{1+i}$£¨iΪÐéÊýµ¥Î»£©¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×㣺a5=9£¬a1+a7=14£¬ÔòÊýÁÐ{an}µÄͨÏʽΪan=2n-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èç¹ûʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{2x+y-4¡Ü0}\\{x-y-1¡Ü0}\\{x¡Ý1}\end{array}\right.$£¬Ôòz=3x+2yµÄ×î´óֵΪ7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ³ÌÐò¿òͼµÄË㷨˼·ԴÓÚÎÒ¹ú¹Å´úÊýѧÃûÖø¡¶¾ÅÕÂËãÊõ¡·Öеġ°¸üÏà¼õËðÊõ¡±£¬Ö´ÐиóÌÐò¿òͼ£¬ÈôÊäÈëa£¬b·Ö±ðΪ9£¬15£¬ÔòÊä³öµÄa=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®15

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸