精英家教网 > 高中数学 > 题目详情

【题目】(Ⅰ)设不等式对满足的一切实数的取值都成立,求的取值范围;

(Ⅱ)是否存在实数,使得不等式对满足的一切实数的取值都成立.

【答案】I;(II见解析.

【解析】试题分析:1不等式可视为关于m的一次函数,根据一次函数单调性可得方程组,解方程组可得的取值范围;2显然不等式为二次不等式时才有满足条件的解,根据二次函数实根分布列方程组,解得方程组可得实数范围为空集

试题解析:(Ⅰ)不等式可化为

,

要使不等式对满足的一切实数的取值都成立,即只需当时, 恒成立,

关于的函数的图象是一条直线,则有

,即,即

∴满足条件的的取值范围为.

(Ⅱ)令 ,使的一切实数都有.

时, 时, 不满足题意

时, 只需满足下式

解之得上述不等式组的解集均为空集

故不存在满足条件的的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, , , 是棱上的动点.

证明:

若平面分该棱柱为体积相等的两个部分,试确定点的位置,并求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数yAsin(ωxφ)( )

像的一部分.为了得到这个函数的图像,只要将y=sin x(x∈R)的图像上所有的点( )

A. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的纵坐标不变.

B. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.

C. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的,纵坐标不变.

D. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形),被截去一角(即), ,平面平面 .

(1)求五棱锥的体积的最大值;

(2)在(1)的情况下,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代著名数学经典.其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为( )

(注:1丈=10尺=100寸,

A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x},集合B={x|x≤1},那么U(A∩B)等于(  )
A.{x|x或x>1}
B.{x|x1}
C.{x|x≤或x1}
D.{x|≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】服装厂拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用)万元满足.已知年生产该产品的固定投入为万元,每生产万件该产品需要投入万元.厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

(1)将2017年该产品的利润万元表示为年促销费用万元的函数;

(2)该服装厂2017年的促销费用投入多少万元时,利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)求的单调区间;

(2)已知,若对所有,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(  )
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

同步练习册答案