精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点E,延长FE交双曲线于点P,O为原点,若
OE
=
1
2
OF
+
OP
),则双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题设知|EF|=b,|PF|=2b,|PF'|=2a,再由|PF|-|PF'|=2a,知b=2a,由此能求出双曲线的离心率.
解答: 解:∵|OF|=c,|OE|=a,OE⊥EF,
∴|EF|=b,
OE
=
1
2
OF
+
OP
),∴|PF|=2b,|PF'|=2a,
∵|PF|-|PF'|=2a,∴b=2a,
∴e=
1+(
b
a
)2
=
5

故答案为:
5
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查抛物线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为0,a1=1且a1,a3,a9成等比数列.
(1)求通项公式an
(2)设bn=2 an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在原点,焦点在x轴上的双曲线的一条渐近线过点(4,-2),则它的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过双曲线C:3x2-y2=9的右顶点,且与双曲线C的一条渐近线平行.若抛物线x2=2py(p>0)的焦点恰好在直线l上,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆的方程为x2+y2-2x-2y+1=0,若直线x+y+a=0与圆有交点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(
x+1
x
)=x4+
1
x4
,x∈R,则函数f(x)的递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

F1、F2为椭圆的两个焦点,过F2的直线交椭圆于A、B两点,AF1⊥AB,且|AF1|=|AB|,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)的定义域为{1,2,3},值域为集合{1,2,3,4}的非空真子集,设点A(1,f(1)),B(2,f(2)),C(3,f(3)),△ABC的外接圆圆心为M,且
MA
+
MC
MB
(λ∈R),满足条件的函数f(x)有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率是2,焦点坐标是(0,-4)(0,4)则双曲线的方程为(  )
A、
x2
4
-
y2
12
=1
B、
y2
4
-
x2
12
=1
C、
x2
10
-
y2
6
=1
D、
y2
6
-
x2
10
=1

查看答案和解析>>

同步练习册答案