精英家教网 > 高中数学 > 题目详情
在空间四边形ABCD中,E、F分别是AD、BC的中点,若AC=BD=a,EF=
2
2
a,∠BDC=90°.求证:BD⊥平面ACD.
考点:直线与平面垂直的判定
专题:空间位置关系与距离
分析:作BC的中点G,连接EG,FG,先证明出EG⊥GF,进而证明出BD⊥AC,最后根据线面垂直的判定定理证明出BD⊥平面ACD.
解答:
证明:作DC的中点G,连接EG,FG,
则EG=
1
2
AC=
a
2
,GF=
1
2
BD=
a
2

∴EG2+GF2=EF2
∴EF⊥FG,
∵EG∥AC,FG∥BD,
∴BD⊥AC,
∵BD⊥DC,DC?平面ACD,AC?平面ACD,AC∪CD=C,
∴BD⊥平面ACD.
点评:本题主要考查了线面垂直的判定定理的应用.证明的关键是找到两条相交的与之垂直的直线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设i是虚数单位,则满足i2014•z=3-4i的复数z的共轭复数是(  )
A、-3-4iB、-3+4i
C、3-4iD、3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥底面ABCD,M为SD的中点,且SA=AD=AB.
(1)求证:AM⊥SC;
(2)求直线SD与平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标平面上,求圆心为A(6,
π
3
),半径为6的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列f(x)=logkx(k为常数,k>0且k≠1),且数列{f(an)} 首项为a,公差为d的等差数列,且满足不等式|a-4|+|d-2|≤0;
(1)求数列{an}的通项an
(2)若bn=an•f(an),当k=
3
时,求数列{bn}的前n项和Sn
(3)若Cn=anlgan,问是否存在实数k,使得{Cn}中每一项恒小于它后面的项?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
4x,x<1
1,x=1
x2,x>1
,设计一个输入自变量x的值,求函数值y的算法的程序框图如图所示.
(1)请将此程序框图补充完整:①处应填:
 
;②处应填:
 
;③处应填:
 

(2)当输入的自变量x的值分别为x=1、x=-2、x=3时,求出相应的函数值y的值.(必须写出计算步骤)

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为
1
3
,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.
(1)求该公司决定对该项目投资的概率;
(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x-y)=x2+y(x-2y)+1,且f(0)=1,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知正四棱柱ABCD-A1B1C1D1中,底面边长为2
2
,侧棱长为4,点E、F分别是棱AB、BC的中点,EF与BD交于点G
(1)求异面直线D1E和DC所成角的正切值;
(2)求证:平面B1EF⊥平面BDD1B1

查看答案和解析>>

同步练习册答案