精英家教网 > 高中数学 > 题目详情
6.已知直线l,m,n及平面α,下列命题中错误的是(  )
A.若l∥m,l∥n,则m∥nB.若l⊥α,n∥α,则l⊥nC.若l⊥m,m∥n,则l⊥nD.若l∥α,n∥α,则l∥n

分析 在A中,由平行公理得m∥n;在B中,由线面垂直、线面平行的性质定理得l⊥n;在C中,平行线的性质定理得l⊥n;在D中,l与n相交、平行或异面.

解答 解:由直线l,m,n及平面α,知:
在A中,若l∥m,l∥n,则由平行公理得m∥n,故A正确;
在B中,若l⊥α,n∥α,则由线面垂直、线面平行的性质定理得l⊥n,故B正确;
在C中,若l⊥m,m∥n,则平行线的性质定理得l⊥n,故C正确;
在D中,若l∥α,n∥α,则l与n相交、平行或异面,故D错误.
故选:D.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在圆内接△ABC,A,B,C所对的边分别为a,b,c,满足acosC+ccosA=2bcosB.
(1)求B的大小;
(2)若点D是劣弧$\widehat{AC}$上一点,AB=3,BC=2,AD=1,求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{{({{a_n}+1})({{a_n}+5})}}$,数列{bn}前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在底面为等腰直角三角形的直三棱柱ABC-A1B1C1中,AB⊥BC,AB=2,AA1=1,D为A1C1的中点,线段B1C上的点M满足$\overrightarrow{{B}_{1}M}$=$\frac{1}{3}$$\overrightarrow{{B}_{1}C}$,求直线BM与面AB1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x-$\sqrt{3}$y+1=0的斜率为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设全集U=R,A={x|$\frac{1}{4}$≤2x<8},B={x|y=$\sqrt{2-x}$}.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x2-2(a+3)+a(a+6)<0},∁UA∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ax3+2x2+1,若f'(-1)=5,则a的值等于(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{5}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(x2-x-2)3展开式中x项的系数为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}中,a1=-5,a3是4与49的等比中项,且a3<0,则a5等于(  )
A.-18B.-23C.-24D.-32

查看答案和解析>>

同步练习册答案