精英家教网 > 高中数学 > 题目详情
解不等式:|x+1|+|x-2|≥7.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:根据绝对值的意义求得|x+1|+|x-2|≥7的解集.
解答: 解:根据绝对值的意义,|x+1|+|x-2|表示数轴上的x对应点到-1、2对应点的距离之和,
而-3和4对应点到-1、2对应点的距离之和正好等于7,
故:|x+1|+|x-2|≥7的解集为 {x|x≤-3,或 x≥4}.
点评:本题主要考查绝对值的意义,绝对值不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x2
(Ⅰ)求h(x)=f(x)-3x的极值;
(Ⅱ)设f(x)=2f(x)-3x2-kx∈R,若函数f(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数f(x)在(x0,F(x0)处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C的圆心为(3,1),且与y轴相切.若⊙C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log 
1
4
an(∈N*),数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{bn}的前n项和Sn
(3)(理科)求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆,且DC=2,DB=1,则△ABC外接圆的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-2)ex和g(x)=kx3-x-2
(1)若函数g(x)在区间(1,2)不单调,求k的取值范围;
(2)当x∈[0,+∞)时,不等式f(x)≥g(x)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的图象一个最低点为M(
8
,-2),相邻两条对称轴之间的距离为
π
2

(1)求f(x)的解析式;
(2)当x∈[0,
π
2
],求f(x)的最大值,最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=x2-2x-3,x≥0},B={x|y=lg(2x-a)},当A∪B=B时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-3,3]上任取一个数a,则圆C1:x2+y2+4x-5=0与圆(x-a)2+y2=1有公共点的概率为
 

查看答案和解析>>

同步练习册答案