分析 n=2k(k∈N*)时,an=a2k=2k•sinkπ+1=1.n=2k-1(k∈N*)时,an=a2k-1=(2k-1)•sin$\frac{2k-1}{2}$π-1=(-1)k-1(2k-1)-1.利用分组求和即可得出.
解答 解:∵n=2k(k∈N*)时,an=a2k=2k•sinkπ+1=1.
n=2k-1(k∈N*)时,an=a2k-1=(2k-1)•sin$\frac{2k-1}{2}$π-1=(-1)k-1(2k-1)-1.
∴S2017=(a2+a4+…+a2016)+(a1+a3+…+a2017)
=1008+(1-3+5-7+…-2017-1009)
=1008+(-1008-2017-1009)
=-3026.
故答案为:-3026.
点评 本题考查了分组求和、三角函数求值、分类讨论方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆 | B. | 双曲线 | C. | 直线 | D. | 线段 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<c<b | B. | c<a<b | C. | b<c<a | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a1008>a1009 | B. | a2016<b2016 | ||
| C. | ?n∈N*,1<n<2017,an>bn | D. | ?n∈N*,1<n<2017,使得an=bn |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $-\frac{5}{3}$ | C. | $\frac{3}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com