分析 由条件利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象特征可得sin(2m+$\frac{π}{3}$)=$\frac{1}{2}$,故有 2m+$\frac{π}{3}$=2kπ+$\frac{π}{6}$,或 2m+$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,k∈Z,由此求得m的最小正值.
解答 解:将函数f(x)=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$)(x∈R)的图象向左平移m(m>0)个单位长度后,
可得函数y=2sin(2x+2m+$\frac{π}{3}$) 的图象,
根据所得的图象过点(0,1),得2sin(2m+$\frac{π}{3}$)=1,即sin(2m+$\frac{π}{3}$)=$\frac{1}{2}$,
∴2m+$\frac{π}{3}$=2kπ+$\frac{π}{6}$,或 2m+$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,k∈Z,
故m的最小正值为$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.
点评 本题主要考查诱导公式,y=Asin(ωx+φ)的图象变换规律,正弦函数的图象特征,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {7,8} | B. | {1,2,5,6,9} | C. | {1,2,5,6} | D. | {3,4,7,8} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 11 | C. | 15 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{2}$,$\frac{\sqrt{5}+1}{2}$) | B. | ($\sqrt{2}$,$\frac{\sqrt{6}+1}{2}$) | C. | (1,$\frac{\sqrt{5}+1}{2}$) | D. | ($\frac{\sqrt{5}+1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com