精英家教网 > 高中数学 > 题目详情
13.设点A在圆心为(3,4)半径为1的圆上,$\overrightarrow{a}$=(2,0),则$\overrightarrow{OA}•\overrightarrow{a}$的最大值为(  )
A.4B.6C.8D.10

分析 根据已知条件能够得出该圆的参数方程为$\left\{\begin{array}{l}{x=3+cosα}\\{y=4+sinα}\end{array}\right.$,从而可设A(3+cosα,4+sinα),进行数量角的运算即可得到$\overrightarrow{OA}•\overrightarrow{a}=6+2cosα$,这时便可知cosα=1时,$\overrightarrow{OA}•\overrightarrow{a}$取到最大值8.

解答 解:圆的方程为:(x-3)2+(y-4)2=1;
∴设x-3=cosα,y-4=sinα;
∴$\left\{\begin{array}{l}{x=3+cosα}\\{y=4+sinα}\end{array}\right.$,α∈R;
∴设A(3+cosα,4+sinα),则:$\overrightarrow{OA}•\overrightarrow{a}=2(3+cosα)=6+2cosα≤8$;
∴$\overrightarrow{OA}•\overrightarrow{a}$的最大值为8.
故选C.

点评 考查圆的标准方程,sin2α+cos2α=1,向量数量积的坐标运算,余弦函数的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知数列{an},{bn}中,a1=a,{bn}是公比为$\frac{2}{3}$的等比数列.记bn=$\frac{{a}_{n}-2}{{a}_{n}-1}$(n∈N*)若不等式an>an+1对一切n∈N*恒成立,则实数a的取值范围是(  )
A.(0,1)B.(0,2)C.($\frac{3}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.观察下面关于循环小数化分数的等式:0.$\stackrel{•}{3}$=$\frac{3}{9}=\frac{1}{3}$,0.$\stackrel{•}{1}\stackrel{•}{8}$=$\frac{18}{99}$=$\frac{2}{11}$,0.$\stackrel{•}{3}5\stackrel{•}{2}$=$\frac{352}{999}$,0.000$\stackrel{•}{5}\stackrel{•}{9}$=0.001×$0.\stackrel{•}{5}\stackrel{•}{9}$=$\frac{1}{1000}×\frac{59}{99}$=$\frac{59}{99000}$据此推测循环小数,0.2$\stackrel{•}{3}$可化成分数(  )
A.$\frac{23}{90}$B.$\frac{99}{23}$C.$\frac{8}{15}$D.$\frac{7}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展开式中只有第六项的二项式系数最大,则展开式的常数项是(  )
A.360B.180C.90D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,有下列命题:
①极坐标为$(3\sqrt{2},\frac{3}{4}π)$的点P所对应的复数是-3+3i;
②ρcosθ=1与曲线x2+y2=y无公共点;
③圆ρ=2sinθ的圆心到直线2ρcosθ-ρsinθ+1=0的距离是$\frac{{\sqrt{5}}}{5}$;
④θ=$\frac{π}{4}$.(ρ>0)与曲线$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}$(θ为参数)相交于点P,则点P的直角坐标是$(\sqrt{2},\frac{{\sqrt{2}}}{2})$.
其中真命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,侧棱AA1⊥底面ABC,D是BC的中点,AA1=AB=AC=2,
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C∥平面AB1D;
(3)求三棱锥A1-B1DA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若数列{an}满足an+1=an2+an,且a1=$\frac{1}{2}$.
(Ⅰ)求a2,a3的值;
(Ⅱ)求证:$\frac{1}{{1+{a_n}}}=\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}$
(Ⅲ)记[x]表示不超过x的最大整数,如[3.6]=3,[-3.6]=-4等.设bn=$\frac{1}{{1+{a_n}}}$,数列{bn}的前n项和为Tn.求[T2015].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于函数f(x)=sinx-2|sinx|的性质.
①f(x)是以2π为周期的周期函数;
②f(x)的单调区间为[2kπ-$\frac{π}{2}$,2kπ],k∈z;
③f(x)的值域为[-2,2];
④f(x)取最小值的x的取值集合为{x|x=2kπ+$\frac{π}{2}$,∈Z}.
其中说法正确的序号有①.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在矩形ABCD中,AB=4,|$\overrightarrow{AB}-\overrightarrow{AD}$|=$\sqrt{17}$,E为线段AB上一点,且BD⊥CE,则$\overrightarrow{AC}•\overrightarrow{DE}$=14.

查看答案和解析>>

同步练习册答案