精英家教网 > 高中数学 > 题目详情
3.在矩形ABCD中,AB=4,|$\overrightarrow{AB}-\overrightarrow{AD}$|=$\sqrt{17}$,E为线段AB上一点,且BD⊥CE,则$\overrightarrow{AC}•\overrightarrow{DE}$=14.

分析 由题意建立平面直角坐标系,得到A,B的坐标,结合|$\overrightarrow{AB}-\overrightarrow{AD}$|=$\sqrt{17}$得到C,D的坐标,然后设出点E的坐标,由BD⊥CE求得E的坐标,然后再由数量积的坐标运算得答案.

解答 解:如图,以A为原点,AB、AD所在直线分别为x轴、y轴建立平面直角坐标系.
则A(0,0),B(4,0),
∵$|\overrightarrow{AB}-\overrightarrow{AD}|=|\overrightarrow{DB}|=\sqrt{17}$,
∴$|\overrightarrow{AD}|=1$,则D(0,1),C(4,1),
设E(x,0),$\overrightarrow{CE}=(x-4,-1),\overrightarrow{BD}=(-4,1)$,
则$\overrightarrow{BD}•\overrightarrow{CE}=4(4-x)-1=0$.
∴x=$\frac{15}{4}$,∴$\overrightarrow{DE}=(\frac{15}{4},-1)$.
又$\overrightarrow{AC}=(4,1)$,∴$\overrightarrow{AC}•\overrightarrow{DE}=15-1=14$.
故答案为:14.

点评 本题考查平面向量的数量积运算,建立坐标系求解是解答该题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设点A在圆心为(3,4)半径为1的圆上,$\overrightarrow{a}$=(2,0),则$\overrightarrow{OA}•\overrightarrow{a}$的最大值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某大型企业人力资源部为研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了180名员工进行调查,所得数据如下表所示:
积极支持企业改革不太赞成企业改革总计
工作积极504090
工作不积极306090
总计80100180
对于人力资源部的研究项目,根据上述数据盘算能否在犯错误的概率不超过0.5%的情况下认为工作积极和支持企业改革有关系.
附:公式及相关数据:
P(k2≥k00.500.050.005
k00.4553.84110.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(1)求实数a的值及参加“掷实心球”项目测试的人数;
(2)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(3)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设两个非零向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,若$\overrightarrow{AB}$=$\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}+10\overrightarrow{b}$,$\overrightarrow{CD}$=3($\overrightarrow{a}-2\overrightarrow{b}$),则(  )
A.A,B,C三点共线B.B,C,D三点共线C.A,C,D三点共线D.A,B,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=4sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,设向量$\overrightarrow{a}$=(-1,f(x)),$\overrightarrow{b}$=(f(-x),1),g(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求函数f(x)的递增区间;
(2)求函数g(x)在区间[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值;
(3)若x∈[0,2015π],求满足$\overrightarrow{a}⊥\overrightarrow{b}$的实数x的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一段演绎推理:“一切奇数都能被3整除,(25+1)是奇数,所以(25+1)能被3整除”,则这段推理的 (  )
A.大前提错误B.小前提错误C.推理形式错误D.结论错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如图),
s1,s2分别表示甲、乙选手的标准差,则s1与s2的关系是(  )
A.s1<s2B.s1=s2C.s1>s2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在数列{an}中,a1=2,an+1-an=$\frac{1}{2}$,n∈N,则a2015的值为1009.

查看答案和解析>>

同步练习册答案