精英家教网 > 高中数学 > 题目详情
17.如图,CD为△ABC外接圆的切线,E,F分别为弦AB与弦AC上的点,AB的延长线交直线CD于点D,且BC•AE=DC•AF,B,E,F,C四点共圆.
(Ⅰ)证明:CA是△ABC外接圆的直径;
(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.

分析 (Ⅰ)由已知条件得△AFE∽△CBD,从而∠AFE=∠CBD,又B,E,F,C四点共圆,得∠CBD=∠CBE=90°,由此能证明CA是△ABC外接圆的直径.
(Ⅱ)连结CE,由CE为B,E,F,C所共圆的直径,得CD=CE,由切线性质得AC⊥DC,由此能求出过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.

解答 (1)证明:∵BC•AE=DC•AF,
∴$\frac{BC}{AF}=\frac{DC}{AE}$…(1分)
又 DC为圆的切线
∴∠DCB=∠EAF…(2分)
∴△AFE∽△CBD…(3分)
∴∠AFE=∠CBD…(4分)
又B,E,F,C四点共圆
∴∠AFE=∠CBE…(5分)
∴∠CBD=∠CBE=90°
∴CA是△ABC外接圆的直径…(6分)
(Ⅱ)解:连结CE,∵∠CBE=90°
∴CE为B,E,F,C所共圆的直径…(7分)
∵DB=BE,且BC⊥DE
∴CD=CE…(8分)
∵DC为圆的切线,AC为该圆的直径
∴AC⊥DC…(9分)
设DB=BE=EA=a,在Rt△ACD中,
CD2=BD•DA=3a2,AC2=AB•AD=6a2
∴$\frac{C{D}^{2}}{A{C}^{2}}$=$\frac{1}{2}$,
∴$\frac{C{E}^{2}}{A{C}^{2}}$=$\frac{1}{2}$,
∴过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为$\frac{1}{2}$.

点评 本题考查三角形外接圆直径的证明,考查两圆半径比值的求法,四点共圆的性质的灵活运用是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x2+2ax+2,x∈R.
(Ⅰ)若函数F(x)=f[f(x)]与f(x)在x∈R时有相同的值域,求a的取值范围.
(Ⅱ)若方程f(x)+|x2-1|=2在(0,2)上有两个不同的根α,β,求a的取值范围,并证明$\frac{1}{α}+\frac{1}{β}$<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知圆O:x2+y2=a2(a>0)过抛物线C:y2=2px(p>0)的焦点F,过点F且与圆O相切的直线被抛物线C截得的弦长为4
(1)求圆O和抛物线C的标准方程;
(2)若P为抛物线C在第一象限内的点,抛物线在点P处的切线y=kx+b(设为l1)被圆O截得的弦长为$\frac{\sqrt{95}}{5}$,直线l2过点P且垂直直线l1,设l2与抛物线的另一交点为M,求弦PM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足$\left\{\begin{array}{l}y≥1\\ y≤2x-1\\ x+y≤m\end{array}\right.$,如果目标函数z=x-y的最小值为-2,则实数m的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,已知△ABC的三个顶点的极坐标系分别为A(2,$\frac{π}{3}$)、B(2,π)、C(2,$\frac{5π}{3}$).
(1)判断△ABC的形状;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=12x焦点的一条直线与抛物线相交于A、B两点,若|AB|=10,则线段AB的中点到y轴的距离等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,函数f(x)=lg(|x+1|-1)的定义域为A,集合B={x|sinπx=0},则(∁UA)∩B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知I为△ABC所在平面上的一点,且AB=c,AC=b,BC=a.若a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$,则I一定是△ABC的(  )
A.垂心B.内心C.外心D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.判断下列函数的奇偶性.
(1)f(x)=x2-x3
(2)f(x)=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$
(3)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$.

查看答案和解析>>

同步练习册答案