精英家教网 > 高中数学 > 题目详情
直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=CC1,M是A1B1的中点,则AC1与BM所成角的余弦值为
 
考点:异面直线及其所成的角
专题:空间角
分析:以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出AC1与BM所成角的余弦值.
解答: 解:以A为原点,AB为x轴,AC为y轴,AA1为z轴,
建立空间直角坐标系,
设AB=AC=CC1=2,
则A(0,0,0),C1(0,2,2),
B(2,0,0),M(1,0,2)
AC1
=(0,2,2),
BM
=(-1,0,2),
设AC1与BM所成角为θ,
cosθ=|cos<
AC1
BM
>|=
|
AC1
BM
|
|
AC1
|•|
BM
|
=
4
8
5
=
10
5

∴AC1与BM所成角的余弦值为
10
5

故答案为:
10
5
点评:本题考查异面直线所成角的求法,是基础题,解题时要注意线线、线面、面面间的位置关系和性质的合理运用,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,E,F,D分别是AA1,AC,BB1的中点,求证:CD∥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a|x-b|-1(x∈R).
(1)若函数f(x)为偶函数,求实数b的值;
(2)在(1)的条件下,若函数f(x)在(0,+∞)不单调,求实数a的取值范围;
(3)当a=1时,先求函数f(x)的最小值g(b),再判断并证明函数g(b)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长度都为2,且两两夹角为60°,则DB1和C1A1所成角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AA1=2,AB=4,AC=BC=3,D为AB的中点,且AB1⊥A1C
(I)求证:AB1⊥A1D;
(Ⅱ)求二面角A-A1C-D的平面的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在曲线y=x3-x上有两个点O(0,0),A(2,6),若I是
OA
上的一点,并使得△AOI的面积最大,求I点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+2,
(1)求实数a的取值范围,使函数y=f(x)在区间[-5,5]上是单调函数;
(2)若x∈[-5,5],记y=f(x)的最大值为g(a),求g(a)的表达式并判断其奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,AA1=a,E、F分别是BC、DC的中点,则AD1与EF所成的角的大小为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosφ,2sinφ),φ∈(90°,180°),
b
=(1,1),则向量
a
b
的夹角为(  )
A、φB、φ-45°
C、135°-φD、45°-φ

查看答案和解析>>

同步练习册答案