精英家教网 > 高中数学 > 题目详情
20.下列表述:
①综合法是由因到果法;
②综合法是顺推法;
③分析法是执果索因法;
④分析法是间接证明法;
⑤分析法是逆推法.
其中正确的语句与(  )
A.2个B.3个C.4个D.5个

分析 根据综合法的定义可得①②正确;根据分析法的定义可得③⑤正确,④不正确.

解答 解:根据综合法的定义可得,综合法是执因导果法,是顺推法,故①②正确.
根据分析法的定义可得,分析法是执果索因法,是直接证法,是逆推法,故③⑤正确,④不正确.
故选:C.

点评 本题主要考查综合法、分析法、反证法的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2-blnx在点(1,f(1))处的切线为y=2.
(1)求实数a,b的值;
(2)是否存在实数m,当x∈(0,1]时,函数g(x)=f(x)-2x2+m(x-1)的最小值为0?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求${∫}_{0}^{1}\frac{x}{1+{x}^{2}}dx$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式x2+bx+$\frac{1}{4}$<0的解集为∅,则b的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设x、y∈(0,+∞),求证:$\frac{1}{2}$(x+y)2+$\frac{1}{4}$(x+y)≥x$\sqrt{y}$+y$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(0,1),直线l:y=kx+m与圆O:x2+y2=1交于B,C两点,△ABC与△OBC的面积分别为S1,S2,若S1≥2S2,且∠BAC=60°,则k的取值范围是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$若方程f(x)-kx=1有两个不同实根,则实数k的取值范围为(  )
A.($\frac{e-1}{3}$,e)B.($\frac{e-1}{2}$,1)∪(1,e-1]C.($\frac{e-1}{3}$,1)∪(1,e)D.($\frac{e-1}{2}$,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解关于x的不等式23x-2x<λ(2x-2-x),其中λ∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知(1-2x)7=a0+a1x+a2x2+…a7x7
(1)求(a0+a2+a4+a62-(a1+a3+a5+a72的值;
(2)求|ai|(其中i=1,2,…,7)的最大值.

查看答案和解析>>

同步练习册答案