精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$若方程f(x)-kx=1有两个不同实根,则实数k的取值范围为(  )
A.($\frac{e-1}{3}$,e)B.($\frac{e-1}{2}$,1)∪(1,e-1]C.($\frac{e-1}{3}$,1)∪(1,e)D.($\frac{e-1}{2}$,e-1]

分析 方程f(x)-kx=1有两个不同实根可化为函数f(x)与函数y=kx+1有两个不同的交点,作函数f(x)与函数y=kx+1的图象,结合函数的图象求解.

解答 解:方程f(x)-kx=1有两个不同实根可化为
函数f(x)与函数y=kx+1有两个不同的交点,
当x>1时,f(x)=f(x-1),周期性变化;
函数y=kx+1的图象恒过点(0,1);
作函数f(x)与函数y=kx+1的图象如下,

C(0,1),B(2,e),A(1,e);
故kAC=e-1,kBC=$\frac{e-1}{2}$;
在点C处的切线的斜率k=e0=1;
结合图象可得,
实数k的取值范围为
($\frac{e-1}{2}$,1)∪(1,e-1];
故选B.

点评 本题考查了方程的根与函数的图象之间的关系应用及学生的作图能力,同时考查了导数的几何意义的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若抛物线y2=2px(p>0)的焦点到其准线的距离为1,则该抛物线的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=asinωx+b(a<0,ω>0)的最大值和最小值分别为$\frac{1+\sqrt{3}}{2}$,$\frac{1-\sqrt{3}}{2}$,且周期为π.
(1)求函数f(x)的解析式;
(2)设A、B、C、D为△ABC的三个内角,若cosB=$\frac{\sqrt{3}}{2}$,f($\frac{C}{2}$)=-$\frac{1}{4}$,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列表述:
①综合法是由因到果法;
②综合法是顺推法;
③分析法是执果索因法;
④分析法是间接证明法;
⑤分析法是逆推法.
其中正确的语句与(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的导数:
(1)y=2xtanx;
(2)y=(x-2)3(3x+1);
(3)y=2xlnx;
(4)y=$\frac{{x}^{2}}{(2x+1)^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(x+1)+loga(3-x)(0<a<1).
(1)求函数f(x)的零点;
(2)若函数f(x)的最小值为-4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=-1,an+1=$\frac{(3n+3){a}_{n}+4n+6}{n}$ (n∈N*),证明:数列{$\frac{{a}_{n}}{n}$+$\frac{2}{n}$}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且满足a=2bsinA.
(Ⅰ)求B的大小;
(Ⅱ)求cosA+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.若BC边上存在两个点Q使得PQ⊥DQ.则a的取值范围是(  )
A.(1,+∞)B.[1,2)C.(2,+∞)D.[2,4]

查看答案和解析>>

同步练习册答案