精英家教网 > 高中数学 > 题目详情
7.求下列函数的导数:
(1)y=2xtanx;
(2)y=(x-2)3(3x+1);
(3)y=2xlnx;
(4)y=$\frac{{x}^{2}}{(2x+1)^{3}}$.

分析 利用导数的运算法则即可得出.

解答 解:(1)(tanx)′=$(\frac{sinx}{cosx})^{′}$=$\frac{co{s}^{2}x-sinx(-sinx)}{co{s}^{2}x}$=$\frac{1}{co{s}^{2}x}$,
∴y′=2tanx+$\frac{2x}{co{s}^{2}x}$.
(2)y′=3(x-2)2(3x+1)+3(x-2)3
(3)${y}^{′}={2}^{x}ln2lnx+\frac{{2}^{x}}{x}$;
(4)y′=$\frac{2x(2x+1)^{3}-6{x}^{2}(2x+1)^{2}}{(2x+1)^{6}}$=$\frac{2x-2{x}^{2}}{(2x+1)^{4}}$.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.比较下面两组数或两组代数式的大小:$\sqrt{7}$+$\sqrt{10}$和$\sqrt{3}$+$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ex+x,g(x)=lnx+x,h(x)=lnx-1的零点依次为a、b、c,试判断a、b、c的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设x、y∈(0,+∞),求证:$\frac{1}{2}$(x+y)2+$\frac{1}{4}$(x+y)≥x$\sqrt{y}$+y$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1+a2+a3+…+an=n-an,其中n∈N.
(1)求数列{an}的通项公式;
(2)令bn=(1+n)(1-an),求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$若方程f(x)-kx=1有两个不同实根,则实数k的取值范围为(  )
A.($\frac{e-1}{3}$,e)B.($\frac{e-1}{2}$,1)∪(1,e-1]C.($\frac{e-1}{3}$,1)∪(1,e)D.($\frac{e-1}{2}$,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设△ABC的内角A,B,C所对的边长分别为a,b,c,且$\frac{cosC}{cosA}$=$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$.
(1)求角A的大小;
(2)设点M为BC的中点,若角B=$\frac{π}{6}$,且AM=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.集合A={x|$\frac{2x-1}{x-2}$<1},B=(a,a+1),若B⊆A,则实数a的取值范围为(  )
A.a<-2B.a≤-2C.-1<a<1D.-1≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α的终边经过点P(-1,3),则cosα的值是(  )
A.$\frac{3}{10}$B.-$\frac{1}{3}$C.$\frac{3\sqrt{10}}{10}$D.-$\frac{\sqrt{10}}{10}$

查看答案和解析>>

同步练习册答案