精英家教网 > 高中数学 > 题目详情
14.比较下面两组数或两组代数式的大小:$\sqrt{7}$+$\sqrt{10}$和$\sqrt{3}$+$\sqrt{14}$.

分析 平方作差即可比较出大小.

解答 解:∵$(\sqrt{7}+\sqrt{10})^{2}-(\sqrt{3}+\sqrt{14})^{2}$
=$2\sqrt{70}$-$2\sqrt{42}$>0,
∴$\sqrt{7}$+$\sqrt{10}$>$\sqrt{3}$+$\sqrt{14}$.

点评 本题考查了平方作差法比较两数的大小,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{\sqrt{-(lgx)^{2}+3lgx-2}}$的定义域是(10,100).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设Sn为等差数列{an}的前n项和.若a3+a8=3,S3=1,则通项公式an=$\frac{n-1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow{a}$与$\overrightarrow{b}$是两个互相垂直的单位向量,若$\overrightarrow{c}$满足($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|$\overrightarrow{c}$|的最大值为(  )
A.2B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC中,$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$,DE∥BC,且与边AC相交于点E,△ABC的中线AM与DE相交于点N,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,用$\overrightarrow{a}$、$\overrightarrow{b}$分别表示向量$\overrightarrow{AE}$、$\overrightarrow{BC}$、$\overrightarrow{DE}$、$\overrightarrow{DB}$、$\overrightarrow{EC}$、$\overrightarrow{DN}$、$\overrightarrow{AN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若抛物线y2=2px(p>0)的焦点到其准线的距离为1,则该抛物线的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足:对任意的正整数n,2n-1≤an≤2n.
(1)若a1,a2,a3是等差数列,且a1=1,求公差d的取值范围;
(2)若a1,a2,a3是等差数列,求公差d的最大值,并给出一个d的最大值时相应的等差数列a1,a2,a3
(3)若数列{an}满足递推式an+1=$\frac{2n+1}{2n-1}$an(n∈N*),求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列各数列的一个通项公式:
(1)$\frac{1}{4}$,$\frac{3}{8}$,$\frac{5}{16}$,$\frac{7}{32}$,$\frac{9}{64}$,…
(2)-$\frac{1}{3}$,$\frac{1}{8}$,-$\frac{1}{15}$,$\frac{1}{24}$,-$\frac{1}{35}$,…
(3)1,0,$\frac{1}{3}$,0,$\frac{1}{5}$,0,$\frac{1}{7}$,0…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的导数:
(1)y=2xtanx;
(2)y=(x-2)3(3x+1);
(3)y=2xlnx;
(4)y=$\frac{{x}^{2}}{(2x+1)^{3}}$.

查看答案和解析>>

同步练习册答案