【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据
如下表所示
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 | 4月6日 |
试销价 | 9 | 11 | 10 | 12 | 13 | 14 |
产品销量 | 40 | 32 | 29 | 35 | 44 |
|
(1)试根据4月2日、3日、4日的三组数据,求
关于
的线性回归方程
,并预测4月6日的产品销售量
;
(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件
的概率.
参考公式:![]()
其中
,![]()
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2
,BC=
,CD=PC=
。
![]()
(I)点E在线段PB上,满足CE//平面PAD,求
的值。
(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图
,已知
是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足
,如图
,将
沿DE折成四棱锥
,且有平面
平面BCED.
![]()
求证:
平面BCED;
记
的中点为M,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在斜三棱柱
中,AB=1,AC=2,
,AB⊥AC,
底面ABC.
![]()
(1)求直线
与平面
所成角的正弦值;
(2)求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足
(
),
(
),则下列说法中错误的是( )
A.若
,则数列
为递增数列
B.若数列
为递增数列,则![]()
C.存在实数
,使数列
为常数数列
D.存在实数
,使
恒成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
,若曲线
与曲线
关于直线
对称.
(1)求曲线
的直角坐标方程;
(2)在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
与
的异于极点的交点为
,与
的异于极点的交点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,圆
:
与
轴交于点
、
,
为椭圆
上的动点,
,
面积最大值为
.
(1)求圆
与椭圆
的方程;
(2)圆
的切线
交椭圆于点
、
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com