精英家教网 > 高中数学 > 题目详情
8.若$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(3,-4),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于(  )
A.arcsin(-$\frac{\sqrt{2}}{10}$)B.arccos$\frac{\sqrt{2}}{10}$C.arccos($\frac{\sqrt{2}}{10}$)D.-arccos$\frac{\sqrt{2}}{10}$

分析 利用向量夹角公式即可得出.

解答 解:∵$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(3,-4),
∴$|\overrightarrow{a}|$=$\sqrt{2}$,$|\overrightarrow{b}|$=$\sqrt{{3}^{2}+(-4)^{2}}$=5.
$\overrightarrow{a}•\overrightarrow{b}$=3-4=-1.
∴$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{-1}{5\sqrt{2}}$=-$\frac{\sqrt{2}}{10}$,
∴$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于arccos$(-\frac{\sqrt{2}}{10})$.
故选:A.

点评 本题考查了向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.不等式8x4+8(a-2)x2-a+5>0对任意x都成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=-x+1,则关于x的方程f(x)=($\frac{1}{2}$)x在x∈[-3,3]上解的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.命题p:关于x的不等式x2-ax+1>0对一切x∈R恒成立,q:指数函数f(x)=(4-3a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),且($\overrightarrow{a}$+$λ\overrightarrow{b}$)$⊥\overrightarrow{a}$,则λ=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.计算$\frac{tan\frac{π}{8}}{{1-tan}^{2}\frac{π}{8}}$的结果是(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“?x0∈R,使x02-1>0”的否定为?x∈R,使x2-1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知ξ~N(3,σ2),若P(ξ≤2)=0.2,则P(ξ≤4)等于(  )
A.0.2B.P(-2≤ξ≤2)=0.4C.P(ξ>2)=0.2D.P(ξ≤4)=0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=1+x-$\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…+\frac{{{x^{2015}}}}{2015}$,g(x)=1-x+$\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}-…-\frac{{{x^{2015}}}}{2015}$,F(x)=f(x+1)•g(x-2)且函数F(x)的零点均在区间[a,b](a<b,a∈Z,b∈Z)内,圆x2+y2=(a-b)2的面积的最小值是(  )
A.36πB.25πC.16πD.

查看答案和解析>>

同步练习册答案