| A. | 36π | B. | 25π | C. | 16π | D. | 9π |
分析 求导数,确定f(x)是R上的增函数,函数f(x)在[-1,0]上有一个零点,同理可得函数g(x)在[1,2]上有一个零点;即可得出结论.
解答 解:f′(x)=1-x+x2-x3+…+x2014;
x>-1时,f′(x)>0,f′(-1)=1>0,x<-1时,f′(x)>0,
因此f(x)是R上的增函数,
∵f(0)=1>0,f(-1)=(1-1)+(-$\frac{1}{2}$-$\frac{1}{3}$)+…+(-$\frac{1}{2014}$-$\frac{1}{2015}$)<0
∴函数f(x)在[-1,0]上有一个零点;
∴函数f(x+1)在[-2,-1]上有一个零点,
同理,g′(x)=-1+x-x2+…-x2014;
x>-1时,g′(x)<0,g′(-1)=-2015<0,x<-1时,g′(x)<0,
因此g(x)是R上的减函数,
∵g(2)<0,g(1)=(1-1)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{2014}$-$\frac{1}{2015}$)>0
∴函数g(x)在[1,2]上有一个零点;
∴函数g(x-2)在[3,4]上有一个零点,
∵函数函数F(x)的零点均在区间[a,b](a<b,a∈Z,b∈Z)内,
∴amax=-2,bmin=4,
∴(b-a)min=4-(-2)=6,
∴圆x2+y2=(a-b)2的面积的最小值是36π,
故选:A.
点评 此题是难题.考查函数零点判定定理和利用导数研究函数的单调性以及数列求和问题以及函数图象的平移,学生灵活应用知识分析解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | arcsin(-$\frac{\sqrt{2}}{10}$) | B. | arccos$\frac{\sqrt{2}}{10}$ | C. | arccos($\frac{\sqrt{2}}{10}$) | D. | -arccos$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com