分析 ( I)通过令等差数列{an}的公差为d,联立S4=4(a3+1)、3a3=5a4,计算可得首项和公差,进而可得an=11-2n;通过令数列{bn}的公比为q,联立b1b2=b3、2b1=a5,计算可知首项和公比,进而可得${b_n}={({\frac{1}{2}})^n}$;
(2)通过(I)知,${S_n}=10n-{n^2}$,分n≤5与n≥6两种情况讨论即可.
解答 解:( I)令等差数列{an}的公差为d,
∵S4=4(a3+1),3a3=5a4,
∴$\left\{\begin{array}{l}4{a_1}+6d=4({{a_1}+2d+1})\\ 3{a_1}+6d=5{a_1}+15d\end{array}\right.$,解得$\left\{\begin{array}{l}{a_1}=9\\ d=-2\end{array}\right.$,
则an=11-2n;
令数列{bn}的公比为q,
∵b1b2=b3,2b1=a5,
∴$\left\{\begin{array}{l}{b_1}^2q={b_1}{q^2}\\ 2{b_1}=1\end{array}\right.$,解得$\left\{\begin{array}{l}{b_1}=\frac{1}{2}\\ q=\frac{1}{2}\end{array}\right.$,
则${b_n}={({\frac{1}{2}})^n}$;
(2)通过(I)知,${S_n}=10n-{n^2}$,
于是${T_n}=\left\{\begin{array}{l}{S_n}=10n-{n^2},n≤5\\ 2{S_5}-{S_n}={n^2}-10n+50,n≥6\end{array}\right.$.
点评 本题考查数列的通项及前n项和,考查分类讨论的思想,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{21}$ | B. | $\frac{20}{21}$ | C. | $\frac{9}{19}$ | D. | $\frac{18}{19}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{10}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 450 | B. | 400 | C. | 200 | D. | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com