精英家教网 > 高中数学 > 题目详情
6.复数$z=\frac{2+4i}{1+i}$(i为虚数单位)在复平面内对应点的坐标是(  )
A.(3,1)B.(-1,3)C.(3,-1)D.(2,4)

分析 利用复数的运算法则、几何意义即可得出.

解答 解:$z=\frac{(2+4i)(1-i)}{(1+i)(1-i)}=3+i$,
∴复数z所对应点的坐标是(3,1).
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为$\frac{3}{4}$,且甲、乙两人是否答对每个试题互不影响.
(Ⅰ)求甲通过自主招生初试的概率;
(Ⅱ)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(Ⅲ)记甲答对试题的个数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甲、乙两位同学期末考试的语文、数学、英语、物理成绩如茎叶图所示,其中甲的一个数据记录模糊,无法辨认,用a来表示,已知两位同学期末考试四科的总分恰好相同,则甲同学四科成绩的中位数为(  )
A.92B.92.5C.93D.93.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在正方体ABCD-A1B1C1D1中,异面直线B1D1与AC所成角大小是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一超市在销售一批大小相近的某时令水果时,由于存放的时间对口味影响较大,超市根据调研决定最多销售5天,第6天就会扎成果汁.进价2元一个,售价10元一个,每天的仓储保管费平均为每个水果每天0.5元,(第一天售出的水果,算一天仓储保管费,第二天售出的水果,算两天仓储保管费,以此类推)一个水果榨成果汁后能卖2元且能很快售完,果汁不计仓储保管成本.按以下规则定价:
售出时间第一天第二天第三天第四天第五天
售出时折扣原价9折8折7折5折
从该批水果中随机抽取100个贴上标记,根据这100个水果的销售情况得到如下数据:
售出的时间第一天第二天第三天第四天第五天
售出的个数402515510
(1)①估计一个水果至多两天(包括两天)销售出去的概率;
②若一个水果在第二天售出,求这个水果产生的利润.
(2)以事件发生的频率作为相应的概率,在这批水果的销售活动中,设一个水果产生的利润为X元,求X的分布列和数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个判断:
①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为$\frac{a+b}{2}$;
②10名工人某天生产同一零件的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③从总体中抽取的样本为$({x_1},y{_1}),(x{_2},{y_2}),…,({x_n},{y_n}),若记\overline x=\frac{1}{n}\sum_{i=1}^n{{x_i},\overline y=\frac{1}{n}}\sum_{i=1}^n{\;}{y_i}$,则回归直线$\widehaty=\widehatbx+\widehata$必过点($\overline x,\overline y$)
④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=4,则P(ξ>2)=0.2
其中正确的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{{\begin{array}{l}{y≥x+2}\\{x+y≤4}\\{2y≥4-x}\end{array}}\right.$,则$z={(\frac{1}{2})^{2x-y}}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos($\frac{π}{4}$+θ).
(I)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a,b,c,且$\frac{c}{cosC}$=$\frac{a+b}{cosA+cosB}$.
(1)求角A的大小;
(2)若△ABC的外接圆直径为1,求a2+b2的取值范围.

查看答案和解析>>

同步练习册答案