精英家教网 > 高中数学 > 题目详情
15.如图,正方形ABCD的边长为$2\sqrt{2}$,E、F分别为AB、AD的中点,M、N是平面ABCD同一侧的两点,MA⊥平面ABCD,MA∥NC,$MA=NC=\sqrt{3}$.
(Ⅰ)设AC∩BD=O,P为NC上一点,若OP∥平面NEF,求NP:PC.
(Ⅱ)证明:平面MEF⊥平面NEF.

分析 (I)设AC∩EF=H,连接NH.由线面平行的性质得出OP∥NH,于是$\frac{NP}{PC}=\frac{OH}{OC}$,根据正方形的性质得出$\frac{OH}{OC}$的值;
(II)连接MH,MN,由勾股定理逆定理证明MH⊥NH,由三线合一证明MH⊥EF,故而得出MH⊥平面NEF,于是平面MEF⊥平面NEF.

解答 证明:(Ⅰ)设AC∩EF=H,连接NH.
∵OP∥平面NEF,OP?平面ACN,平面ACN∩平面NEF=NH,
∴OP∥NH,
∴NP:PC=HO:OC.
∵四边形ABCD是正方形,E,F分别为AB,AD中点,
∴HO:OC=1:2,即NP:PC=1:2.
(Ⅱ)连接MH,MN,
∵MA=NC,MA∥NC,
∴四边形ACNM是平行四边形,∴MN=AC=4.
∵MA=NC=$\sqrt{3}$,AH=$\frac{1}{4}AC$=1,CH=$\frac{3}{4}AC$=3,
∴MH=2,NH=2$\sqrt{3}$.
∴MN2=MH2+NH2,∴MH⊥NH,
又ME=MF,H是EF的中点,∴MH⊥EF,
∵EF?平面NEF,NH?平面NEF,EF∩NH=H,
∴MH⊥平面NEF,又MH?平面MEF
∴平面MEF⊥平面NEF.

点评 本题考查了线面平行的性质,面面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设有命题p:方程$\frac{x^2}{m-4}-\frac{y^2}{m+2}=1$表示双曲线,命题q:A?B,其中集合A={(x,y)|x2=y2+m,x∈R,y∈R},B={(x,y)|(x+y)(x-y)>0,x∈R,y∈R}.若“p或?q”为真命题,“p且?q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=2ln{x^2}-\frac{1}{2}m{x^2}-nx$.
(I)若m=-1,n=3,求函数y=f(x)的单调区间;
(Ⅱ)若x=2是f(x)的极大值点,求出m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试讨论y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲乙两家快餐店对某日7个时段来店光临的客人人数进行统计绘制茎叶图如图所示(下面简称甲数据、乙数据),且乙数据的众数为17,甲数据的平均数比乙数据平均数少2.
(1)求a,b的值,并计算乙数据的方差;
(2)现从乙数据中不高于16的数据中随机抽取两个,求至少有一个数据小于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx,$g(x)=-\frac{k}{x},(k≠0)$
(Ⅰ)求曲线y=f(x)在(e,f(e))处的切线方程;
(Ⅱ)求函数h(x)=f(x)-g(x)的单调递增区间;
(Ⅲ)若对?x∈(-∞,0)∪(0,+∞)都有f(|x|)≥g(|x|)成立,试确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x,y满足的条件$\left\{\begin{array}{l}x≥0\\ x+y≤1\\ x-y≤1\end{array}\right.$,则z=y-2x的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知i是虚数单位,若复数(1+ai)(2-i)是纯虚数(a∈R),则复数a+i的共轭复数为-2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若数列{an}中,a1=a2=1,an+2-an+1+an=0,则a2016=(  )
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC是边长为1的正三角形,点P1,P2,P3四等分线段BC(如图所示).
(1)求$\overrightarrow{AB}$•$\overrightarrow{A{P_1}}$+$\overrightarrow{A{P_1}}$•$\overrightarrow{A{P_2}}$的值;
(2)Q为线段AP1上一点,若$\overrightarrow{AQ}$=m$\overrightarrow{AB}$+$\frac{1}{12}$$\overrightarrow{AC}$,求实数m的值.

查看答案和解析>>

同步练习册答案