17£®Ä³Ð£ÆóºÏ×÷¹¤³§»ú´²µÄÉú²úÊýÁ¿x£¨°Ų̀£©ÓëÉú²ú³É±¾y£¨ÍòÔª£©Ö®¼äÓÐ×ÅÒ»¶¨µÄº¯Êý¹ØÏµ£¬ÔÚ¾­¼ÃѧÖгÆÎª³É±¾º¯Êý£¬¼ÇΪC£¨x£©£®ÒÑÖªÕâ¸öº¯ÊýÊÇÒ»Ôª¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©£¬ÇÒ»ú´²µÄÊÕÒæº¯ÊýR£¨x£©=18.5x£®¾­Êµ¼Ê²âËãµÃµ½ÏÂÁÐÊý¾Ý£º
²úÆ·ÊýÁ¿x03467.210
Éú²ú³É±¾y5072.582104119.2160
£¨1£©ÇóÀûÈóº¯ÊýL£¨x£©£º[Ìáʾ£ºÀûÈóº¯ÊýL£¨x£©=R£¨x£©-C£¨x£©]
£¨2£©ÈôÆóÒµÓ¯Àû£¬ÊÔÇóÉú²úÊýÁ¿xµÄ·¶Î§£®

·ÖÎö £¨1£©½«±íÖÐÊý¾ÝѡȡÈý×飬´úÈëÇó³öa£¬b£¬cÖµ£¬¿ÉµÃ-C£¨x£©£¬ÔÙÓÉL£¨x£©=R£¨x£©-C£¨x£©µÃµ½´ð°¸£®
£¨2£©Á1£©ÖÐËùµÃº¯Êý´óÓÚ0£¬½âµÃÉú²úÊýÁ¿xµÄ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßy=C£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬
½«£¨0£¬50£©£¬£¨4£¬82£©£¬£¨10£¬160£©´úÈëµÃ£º
$\left\{\begin{array}{l}c=50\\ 16a+4b+c=82\\ 100a+10b+c=160\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}a=\frac{1}{2}\\ b=6\\ c=50\end{array}\right.$
¼´C£¨x£©=$\frac{1}{2}$x2+6x+50£¬
ÓÖ¡ßL£¨x£©=R£¨x£©-C£¨x£©£¬R£¨x£©=18.5x
¡àL£¨x£©=-$\frac{1}{2}$x2+12.5x-50£¬
£¨2£©ÓÉ-$\frac{1}{2}$x2+12.5x-50£¾0µÃ£º
½âµÃ£ºx¡Ê£¨5£¬20£©£¬

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǶþ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Êǽâ´ðµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³ÖÖ²úÆ·µÄÖÊÁ¿ÒÔÆäÖÊÁ¿Ö¸±êÖµºâÁ¿£¬ÖÊÁ¿Ö¸±êÖµÔ½´ó±íÃ÷ÖÊÁ¿Ô½ºÃ£¬¼ÇÆäÖÊÁ¿Ö¸±êΪk£¬µ±k¡Ý85ʱ£¬²úƷΪһ¼¶Æ·£»µ±75¡Ük£¼85ʱ£¬²úƷΪ¶þ¼¶Æ·£»µ±70¡Ük£¼75ʱ£¬²úƷΪÈý¼¶Æ·£®ÏÖÓÃÁ½ÖÖÐÂÅä·½£¨·Ö±ð³ÆÎªAÅä·½ºÍBÅä·½£©×öʵÑ飬¸÷Éú²úÁË100¼þÕâÖÖ²úÆ·£¬²¢²âÁ¿ÁËÿ¼þ²úÆ·µÄÖÊÁ¿Ö¸±êÖµ£¬µÃµ½ÏÂÃæÊÔÑé½á¹û£º£¨ÒÔϾùÊÓÆµÂÊΪ¸ÅÂÊ£©
AÅä·½µÄƵÊý·Ö²¼±í                             BÅä·½µÄƵÊý·Ö²¼±í
Ö¸±êÖµ·Ö×é[75£¬80£©[80£¬85£©[85£¬90£©[90£¬95£©Ö¸±êÖµ·Ö×é[75£¬80£©[80£¬85£©[85£¬90£©[90£¬95£©[75£¬80£©
ƵÊý10304020ƵÊý510154030
£¨1£©Èô´ÓBÅä·½²úÆ·ÖÐÓзŻصØËæ»ú³éÈ¡3¼þ£¬¼Ç¡°³é³öµÄBÅä·½²úÆ·ÖÐÖÁÉÙ1¼þ¶þ¼¶Æ·¡±ÎªÊ¼þC£¬ÇóʼþCµÄ¸ÅÂÊP£¨C£©£»
£¨2£©ÈôÁ½ÖÖвúÆ·µÄÀûÈóÂÊÓëÖÊÁ¿Ö¸±êÖµkÂú×ãÈçϹØÏµ£ºy=$\left\{\begin{array}{l}{t£¬k¡Ý85}\\{5{t}^{2}£¬75¡Ük£¼85}\\{{t}^{2}£¬70¡Ük£¼75}\end{array}\right.$£¨ÆäÖÐ$\frac{1}{7}$£¼t£¼$\frac{1}{6}$£©£¬´Ó³¤ÆÚÀ´¿´£¬Í¶×ÊÄÄÖÖÅä·½µÄ²úƷƽ¾ùÀûÈóÂʽϴó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Çóº¯Êýf£¨x£©=-x2+2ax-1ÔÚ[0£¬2]ÉϵÄ×î´óÖµ¡¢×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èô²»µÈʽx2-logmx£¼0ÔÚ£¨0£¬$\frac{1}{2}$£©ÄÚºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®PΪ¡÷ABCËùÔÚÆ½ÃæÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{OP}$=$\overrightarrow{OA}$+¦Ë£¨$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$£©£¬ÔòPµÄ¹ì¼£¹ý¡÷ABCµÄ´¹ÐÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®$\frac{lo{g}_{8}8}{{log}_{2}3}$=log32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªf£¨x£©µÄµ¼Êýf¡ä£¨x£©=3x2-3ax£¬f£¨0£©=b£¬a¡¢b¡ÊR£¬1£¼a£¼2
£¨1£©Èôº¯Êýf£¨x£©ÔÚ[-1£¬1]ÉϵÄ×îСֵΪ-2£¬×î´óֵΪ1£¬Çóa¡¢b£®
£¨2£©É躯ÊýF£¨x£©=£¨f¡ä£¨x£©+6x+1£©•e2x£¬ÊÔÈ·¶¨F£¨x£©µÄ¼«Öµµã¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªx¡Ê£¨-¡Þ£¬2£©£¬2-xµÄȡֵ·¶Î§ÊÇ£¨0£¬+¡Þ£©£®£¨ÓÃÇø¼ä±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®»¯¼ò£º$\root{3}{2-\sqrt{5}}•\root{6}{9+4\sqrt{5}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸