精英家教网 > 高中数学 > 题目详情
9.若a=33(10),b=52(6),c=11111(2),则三个数的大小关系是a>b>c.

分析 分别将b,c转化为10进制,然后比较大小.

解答 解:将b,c都转化为10进制数,
b=52(6)=5×61+2=32,
c=11111(2)=1×24+1×23+1×22+1×2+1×20=31,
因为33>32>31,
所以a>b>c.
故答案为:a>b>c.

点评 本题考查的知识点是不同进制数之间的转换,解答的关键是熟练掌握不同进制之间数的转化规则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.命题“若(a-2)(b-3)=0,则a=2或b=3”的否命题是(  )
A.若(a-2)(b-3)≠0,则a≠2或b≠3B.若(a-2)(b-3)≠0,则a≠2且b≠3
C.若(a-2)(b-3)=0,则a≠2或b≠3D.若(a-2)(b-3)=0,则a≠2且b≠3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二项式${(2-\sqrt{x})^8}$的展开式中x3的系数是112.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C:$\frac{x^2}{4}+\frac{y^2}{9}=1$,直线l:$\left\{{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}}\right.(t为参数)$.
(1)写出曲线C的参数方程,直线l的普通方程;
(2)已知点P为曲线C上的一个动点,求点P到直线l的距离的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的定义域:
(1)y=$\sqrt{lg(cosx)}$;
(2)y=lgsin2x+$\sqrt{9-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$z=\frac{i^3}{i-1}$,则其共轭复数$\overline z$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在四面体S-ABCD中,$AB⊥BC,AB=BC=\sqrt{2}$SA=SC=SB=2,则该四面体外接球的表面积是(  )
A.$\frac{4}{3}π$B.$\frac{8}{3}π$C.$\frac{10}{3}π$D.$\frac{16}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个命题中真命题的个数是(  )
①若y=f(x)是奇函数,则y=|f(x)|的图象关于y轴对称;
②若logm3<logn3<0,则0<m<n<1;
③若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则8是函数f(x)的一个周期;
④命题“在△ABC中,A>B是sinA>sinB成立的充要条件;
⑤命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=2sin(ωx+φ)(x∈R,ω>0,-π<φ<π)的部分图象如图所示,若将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,则函数g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案