ÉèA(xA,yA)£¬B(xB,yB)ΪƽÃæÖ±½Ç×ø±êϵÉϵÄÁ½µã,ÆäÖÐxA,yA,xB,yBÎZ.Áî¡÷x=xB-xA£¬¡÷y=yB-yA,Èô|¡÷x|+|¡÷y|=3£¬ÇÒ|¡÷x|¡¤|¡÷y|¡Ù0,Ôò³ÆµãBΪµãAµÄ¡°Ïà¹Øµã¡±,¼Ç×÷£ºB=f(A).
(1)ÇëÎÊ:µã(0,0)µÄ¡°Ïà¹Øµã¡±Óм¸¸ö?ÅжÏÕâЩµãÊÇ·ñÔÚͬһ¸öÔ²ÉÏ,ÈôÔÚ,д³öÔ²µÄ·½³Ì£»Èô²»ÔÚ£¬ËµÃ÷ÀíÓÉ£»
(2)ÒÑÖªµãH(9,3),L(5,3),ÈôµãMÂú×ãM=f(H),L=f(M),ÇóµãMµÄ×ø±ê£»
(3)ÒÑÖªP0(x0,y0)(x0ÎZ,y0ÎZ)Ϊһ¸ö¶¨µã, ÈôµãPiÂú×ãPi=f (Pi-1),ÆäÖÐi=1,2,3,¡¤¡¤¡¤,n£¬Çó|P0Pn|µÄ×îСֵ£®

£¨1£©x²+y²=5
£¨2£©M(7,2)»òM(7,4).
£¨3£©µ±Ê±, |P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0£»
µ±n=2k+1,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ1.

½âÎöÊÔÌâ·ÖÎö£º½â: (1)ÒòΪ|¡÷x|+|¡÷y|=3(|¡÷x|,|¡÷y|Ϊ·ÇÁãÕûÊý),
¹Ê|¡÷x|=1,|¡÷y|=2»ò|¡÷x|=2,|¡÷y|=1,ËùÒÔµã(0,0)µÄ¡°Ïà¹Øµã¡±ÓÐ8¸ö .
ÓÖÒòΪ(¡÷x)²+(¡÷y)²=5,¼´(¡÷x-0)²+(¡÷y-0)²="5" .
ËùÒÔÕâЩ¿ÉÄÜÖµ¶ÔÓ¦µÄµãÔÚÒÔ(0,0)ΪԲÐÄ,Ϊ°ë¾¶µÄÔ²ÉÏ£¬
·½³ÌΪx²+y²="5" .                     3·Ö
(2)ÉèM(xM,yM),
ÒòΪM=f(H),L=f(M),
ËùÒÔÓÐ|xM-9|+|yM-3|="3," |xM-5|+|yM-3|=3,
ËùÒÔ|xM-9|=|xM-5|,ËùÒÔxM=7, yM=2»òyM=4,
ËùÒÔM(7,2)»òM(7,4).                6·Ö
(3) µ±n=1ʱ,¿ÉÖª|P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0 ;
µ±n=3ʱ,¶ÔÓÚµãP,°´ÕÕÏÂÃæµÄ·½·¨Ñ¡Ôñ¡°Ïà¹Øµã¡±,¿ÉµÃP3(x0,y0+1):
P0(x0,y0)¡úP1(x0+2,y0+1)¡úP2(x0+1,y0+3) ¡úP3(x0,y0+1)
¹Ê|P0Pn|µÄ×îСֵΪ1,
µ±n=2k+3, kÎN *ʱ,¶ÔÓÚµãP,¾­¹ý2k´Î±ä»»»Øµ½³õʼµãP0(x0,y0),È»ºó¾­¹ý3´Î±ä»»»Øµ½Pn(x0,y0+1),¹Ê|P0Pn|µÄ×îСֵΪ1.
×ÛÉÏ,µ±Ê±, |P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0£»
µ±n=2k+1,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ1.         10·Ö
¿¼µã£ºÔ²µÄ·½³Ì£¬Á½µã¾àÀë
µãÆÀ£ºÖ÷ÒªÊÇ¿¼²éÁËÔ²µÄ·½³ÌµÄÇó½â£¬ÒÔ¼°Á½µã¾àÀëµÄ×îÖµ£¬ÊôÓÚÖеµÌâ¡£

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÖ±ÏßL¾­¹ýµã£¬ÇÒÖ±ÏßLÔÚxÖáÉϵĽؾàµÈÓÚÔÚyÖáÉϵĽؾàµÄ2±¶£¬ÇóÖ±ÏßLµÄ·½³Ì.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑ֪Բ׶ÇúÏßC£º£¬µã·Ö±ðΪԲ׶ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£¬µãBΪԲ׶ÇúÏßCµÄÉ϶¥µã£¬Çó¾­¹ýµãÇÒ´¹Ö±ÓÚÖ±ÏßµÄÖ±Ïߵķ½³Ì.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÖ±Ïߵķ½³ÌΪ3x£«4y£­12£½0£¬ÇóÂú×ãÏÂÁÐÌõ¼þµÄÖ±Ïߵķ½³Ì£®
(1) £¬ÇÒÖ±Ïß¹ýµã(£­1,3)£»
(2) £¬ÇÒÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ4.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÖ±Ïß¾­¹ýµã,Çãб½Ç£¬
£¨1£©Ð´³öÖ±ÏߵIJÎÊý·½³Ì
£¨2£©ÉèÓëÔ²ÏཻÓëÁ½µã£¬Çóµãµ½Á½µãµÄ¾àÀëÖ®»ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ƽÐÐËıßÐεÄÁ½ÁÚ±ßËùÔÚÖ±Ïߵķ½³ÌΪx£«y£«1£½0¼°3x£­4£½0£¬Æä¶Ô½ÇÏߵĽ»µãÊÇD(3,3)£¬ÇóÁíÁ½±ßËùÔÚµÄÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

Ö±Ïß±»Á½Ö±ÏߺͽصõÄÏ߶ÎÖеãΪP
£¨1£©ÇóÖ±Ïߵķ½³Ì
£¨2£©ÒÑÖªµã£¬ÔÚÖ±ÏßÉÏÕÒÒ»µãM,ʹ×îС£¬²¢Çó³öÕâ¸ö×îСֵ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

£¨±¾ÌâÂú·Ö15·Ö£©
ÒÑÖªµã£¬ÊÇÅ×ÎïÏßÉÏÏàÒìÁ½µã£¬ÇÒÂú×㣮
£¨¢ñ£©ÈôµÄÖд¹Ïß¾­¹ýµã£¬ÇóÖ±Ïߵķ½³Ì£»
£¨¢ò£©ÈôµÄÖд¹Ïß½»ÖáÓڵ㣬ÇóµÄÃæ»ýµÄ×î´óÖµ¼°´ËʱֱÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

(±¾Ð¡ÌâÂú·Ö14·Ö)£®
ÇóÇãб½ÇÊÇÖ±Ïßy£½£­x£«1µÄÇãб½ÇµÄ£¬ÇÒ·Ö±ðÂú×ãÏÂÁÐÌõ¼þµÄÖ±Ïß·½³Ì£º
(1)¾­¹ýµã(£¬£­1)£»
(2)ÔÚyÖáÉϵĽؾàÊÇ£­5.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸