精英家教网 > 高中数学 > 题目详情
16.设[x]表示不超过x的最大整数(如$[2]=2,[{\frac{5}{4}}]=1$),对于函数f(x)=$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$,函数$g(x)=[{f(x)-\frac{1}{2}}]+[{f(-x)-\frac{1}{2}}]$的值域是(  )
A.{-1,0}B.{-1,1}C.{0,1}D.{-1,0,1}

分析 根据题意:[x]表示不超过x的最大整数,先求出f(x)的范围,再求f(x)-$\frac{1}{2}$的范围,根据[$f(x)-\frac{1}{2}$],[$f(-x)-\frac{1}{2}$]的最大整数,即可得到g(x)的值域.

解答 解:函数f(x)=$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$=1-$\frac{1}{1+201{5}^{x}}$,∴0<f(x)<1
那么:$-\frac{1}{2}$<f(x)-$\frac{1}{2}$<$\frac{1}{2}$
则:那么:[$f(x)-\frac{1}{2}$]=[$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$-$\frac{1}{2}$]=0或-1.
f(-x)=$\frac{201{5}^{-x}}{1+201{5}^{-x}}$=$\frac{1}{201{5}^{x}+1}$=1-$\frac{1}{1+201{5}^{x}}$,∴0<f(-x)<1
那么:$-\frac{1}{2}$<f(-x)-$\frac{1}{2}$<$\frac{1}{2}$
[$f(-x)-\frac{1}{2}$]=[$\frac{1}{201{5}^{x}+1}-\frac{1}{2}$]=-1或0.
所以函数$g(x)=[{f(x)-\frac{1}{2}}]+[{f(-x)-\frac{1}{2}}]$的值域{-1,0}
故选A.

点评 本题考查了新定义的函数的应用问题,也考查了求函数在某一区间上的最值问题,要灵活运用基础知识求解.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.小华同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上的球场中轴线上,y轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.

(1)求发射器的最大射程;
(2)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=(x-3)|x|
(1)用分段函数的形式表示该函数
(2)画出该函数的图象
(3)写出该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知两条直线l1:3x+4y-2=0与l2:2x+y+2=0的交点P,求:
(1)过点P且过原点的直线l的方程;
(2)若直线m与l平行,且点P到直线m的距离为3,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求垂直于直线x+3y-5=0且与点P(-1,0)的距离是$\frac{3\sqrt{10}}{5}$的直线方程;
(2)求圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果直线2x-y+m=0与圆x2+(y-2)2=5相切,那么m的值为-3或7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程是$\left\{\begin{array}{l}x=t-2\\ y=2-2t\end{array}\right.(t$为参数),曲线C的极坐标方程为$ρ=2\sqrt{2}sin(θ+\frac{π}{4})$,直线l与曲线C交于A、B零点,与y轴交于点P.
(1)求曲线C的参数方程;
(2)过曲线C上任意一点P作与直线l夹角为30°的直线,角l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tanα=3,则$\frac{2sinα-cosα}{sinα+3cosα}$等于(  )
A.$\frac{1}{3}$B.$\frac{5}{6}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,a=2,b=3,c=4,则最大角的余弦值为(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

同步练习册答案