精英家教网 > 高中数学 > 题目详情
6.有20台电脑,分给三所学校,每校至少5台,有多少不同分配方法?

分析 20台电脑,每校至少5台,可以分为(10,5,5),(9,6,5),(8,6,6),(8,7,5),(7,7,6)5组,分别求出每一组的分配方法,即可得到答案.

解答 解:20台电脑,每校至少5台,可以分为(10,5,5),(9,6,5),(8,6,6),(8,7,5),(7,7,6)5组,
第一组,第三组种,第四组的分配方法为3C31=9种,
第二组,第三组的分配方法2A33=12种,
根据分类计数原理,共有9+12=21种.

点评 本题考查l分类计数原理,关键是分组,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是公差为2的等差数列.
(1)a1,a3,a4成等比数列,求a1的值;
(2)设a1=-19,数列{an}的前n项和为Sn.数列{bn}满足${b_1}=1,{b_{n+1}}-{b_n}={({\frac{1}{2}})^n}$,记cn=Sn+2n-1•bn(n∈N*),求数列{cn}的最小项cn0(即cn0≤cn对任意n∈N*成立).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a=2-3,b=30.5,c=log25,则a,b,c的大小关系是(  )
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线x-y+$\sqrt{10}$=0与圆x2+y2=b2相交截得的弦长为2$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)椭圆C与直线2x-3y=0在第一象限的交点为P,与直线OP平行的直线l交椭圆于A,B两点,求证:∠APB的平分线与y轴垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.化简:$\sqrt{(1+si{n}^{2}\frac{x}{2})^{2}+(1-si{n}^{2}\frac{x}{2})^{2}-4si{n}^{2}\frac{x}{2}}$=$\sqrt{2}co{s}^{2}\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对?x1∈(a,b),?x2∈(c,d),则f(x1)<f(x2)?f(x1max<f(x2min
对?x1∈(a,b),?x2∈(c,d),则f(x1)<f(x2)?f(x1max<f(x2max
对?x1∈(a,b),?x2∈(c,d),则f(x1)<f(x2)?f(x1min<f(x2min
对?x1∈(a,b),?x2∈(c,d),则f(x1)<f(x2)?f(x1min<f(x2max

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知cos2C=-$\frac{1}{4}$,若a=2,2sinA=sinC,则b的值为(  )
A.$\sqrt{6}$B.2$\sqrt{6}$C.$\sqrt{6}$或2$\sqrt{6}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在复平面内,A,B,C三点对应的复数分别为1,2+i,-1+2i.
(1)求向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{BC}$对应的复数;
(2)若ABCD为平行四边形,求D点对应的复数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作,其中卷六《均输》篇中:今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何?意思是说,今有人持金出五关,第一关收税金二分之一,第二关收税金三分之一,第三关收税金四分之一,第四关收税金五分之一,第五关收税金六分之一,五关所收税金之和恰好为1斤,问原本持金多少?答$\frac{6}{5}$斤.

查看答案和解析>>

同步练习册答案