精英家教网 > 高中数学 > 题目详情
如图,△BCD中,∠BCD=90°,AB⊥平面BCD,E,F分别为AC,AD的中点.
求证:平面BEF⊥平面ABC.
考点:平面与平面垂直的判定
专题:空间位置关系与距离
分析:由线面垂直得AB⊥CD,由直角性质得CB⊥CD,从而得CD⊥平面ABC,由中位线定理得EF∥CD,进而得到EF⊥平面ABC,由此能证明平面BEF⊥平面ABC.
解答: 证明:∵AB⊥平面BCD,
∴AB⊥CD.…(2分)
∵∠BCD=90°,∴CB⊥CD.…(1分)
∵AB∩BC=B,AB?平面ABC,
BC?平面ABC,∴CD⊥平面ABC.…(2分)
∵E,F分别为AC,AD的中点,∴EF∥CD.…(2分)
∴EF⊥平面ABC.…(1分)
∵EF?平面BEF,
∴平面BEF⊥平面ABC.…(2分)
点评:本题考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不论m为何值,函数f(x)=x2+mx-1,x∈R的零点有(  )
A、1个B、2个
C、0个D、都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

一个物体的运动方程为s=2t2+t+1,其中s的单位是米,t的是秒,那么物体在2秒末的瞬时速度是(  )
A、10米/秒B、7米/秒
C、9米/秒D、8米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,tanAsin2B=tanBsin2A,那么△ABC一定是(  )
A、锐角三角形
B、直角三角形
C、等腰三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A对应的变换是先将某平面图形上的点的纵坐标保持不变,横坐标变为原来的2倍,再将所得图形绕原点按顺时针方向旋转90°.
(1)求矩阵A及A的逆矩阵B;
(2)已知矩阵M=
33
24
,求M的特征值和特征向量;
(3)若α=
1
8
在矩阵B的作用下变换为β,求M50β(运算结果用指数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

写出下列命题的非命题:
(1)所有自然数的平方是正数;
(2)任何实数x都是方程5x-12=0的根.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为某几何体三视图,已知三角形的三边长与圆的直径均为2,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设{
bn
an
}是首项为1公比为2的等比数列,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的方程为
x2
4
+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,求双曲线C2的方程.

查看答案和解析>>

同步练习册答案