精英家教网 > 高中数学 > 题目详情
17.已知某几何体的三视图如图所示(单位:cm),则此几何体的体积为$\frac{8}{3}$,表面积为$6+2\sqrt{5}+2\sqrt{2}$.

分析 由三视图可知该几何体一个四棱锥,由三视图求出几何元素的长度,利用锥体体积公式计算出几何体的体积,由面积公式求出几何体的表面积.

解答 解:根据三视图可知几何体是一个四棱锥,
底面是一个边长为2的正方形,PE⊥面ABCD,且PE=2,
其中E、F分别是BC、AD的中点,连结EF、PA,
∴几何体的体积V=$\frac{1}{3}×2×2×2$=$\frac{8}{3}$,
在△PEB中,PB=$\sqrt{P{E}^{2}+B{E}^{2}}$=$\sqrt{5}$,同理可得PC=$\sqrt{5}$,
∵PE⊥面ABCD,∴PE⊥CD,
∵CD⊥BC,BC∩PE=E,∴CD⊥面PBC,则CD⊥PC,
在△PCD中,PD=$\sqrt{P{C}^{2}+D{C}^{2}}$=$\sqrt{5+4}$=3,
同理可得PA=3,则PF⊥AD,
在△PDF中,PF=$\sqrt{P{D}^{2}-D{F}^{2}}$=$\sqrt{9-1}$=$2\sqrt{2}$,
∴此几何体的表面积S=2×2+$\frac{1}{2}×2×2$+$2×\frac{1}{2}×2×\sqrt{5}$+$\frac{1}{2}×2×2\sqrt{2}$
=$6+2\sqrt{5}+2\sqrt{2}$
故答案为:$\frac{8}{3}$;$6+2\sqrt{5}+2\sqrt{2}$.

点评 本题考查三视图求几何体的体积以及表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力和逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设曲线y=xn+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2012x1+log2012x2+…+log2012x2011的值为(  )
A.-log20122011B.-1C.(log20122011)-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x-1)2+y2=1相切,切点分别为A,B,求证:A、B、F三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C:mx2+ny2=1经过点A(5,0),B(4,$\frac{12}{5}$).
(1)求曲线C的方程.
(2)若曲线C上一点P到点M(-3,0)的距离等于6,求点P到点N(3,0)的距离|PN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC的三个顶点均在抛物线y2=x上,边AC的中线BM∥x轴,|BM|=2,则△ABC的面积为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.矩形ABCD中,AB=2,AD=1,P为矩形内部一点,且AP=1.设∠PAB=θ,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),则2λ+$\sqrt{3}$μ取得最大值时,角θ的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)满足(x-1)f′(x)≤0(f′(x)是f(x)的导函数),且y=f(x)的图象关于直线x=1对称,当|x1-1|<|x2-1|时,恒有(  )
A.f(2-x1)≥f(2-x2B.f(2-x1)=f(2-x2C.f(2-x1)<f(2-x2D.f(2-x1)≤f(2-x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C1:x2+y2=r2和椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若过圆C1上一点(x0,y0)作圆C1的切线,则切线方程为x0x+y0y=r2,类比圆的这一性质,若过椭圆C2上一点(x0,y0)作椭圆C2的切线,请写出切线的方程,并证明你的结论;
(2)如图1,设A,B,C,D分别是圆C1与坐标轴的四个交点,过圆C1上任意一点P(x0,y0)(不与A,B,C,D重合)的切线交x轴于点Q,连接PA交x轴于点H,则QD,QH,QC成等比数列,类比圆的这一性质,叙述在椭圆C2(如图2)中类似的性质,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1和右焦点F2,上顶点为A,AF2的中垂线交椭圆于点B,若左焦点F1在线段AB上,则椭圆离心率为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案