| A. | f(2-x1)≥f(2-x2) | B. | f(2-x1)=f(2-x2) | C. | f(2-x1)<f(2-x2) | D. | f(2-x1)≤f(2-x2) |
分析 通过讨论:①若f(x)=c,②若f(x)不是常数,结合函数的对称性判断大小即可.
解答 解:①若f(x)=c,则f'(x)=0,此时(x-1)f'(x)≤0,
当|x1-1|<|x2-1|时,恒有f(2-x1)=f(2-x2).
,函数y=f(x)关于x=1对称,
所以f(2-x1)=f(x1),f(2-x2)=f(x2).
当x>1时,f'(x)≤0,此时函数y=f(x)单调递减,
当x<1时,f'(x)≥0,此时函数y=f(x)单调递增.
若x1≥1,x2≥1,则由|x1-1|<|x2-1|,得x1-1<x2-1,
即1≤x1<x2,所以f(x1)>f(x2),
同理若x1<1,x2<1,由|x1-1|<|x2-1|,得-(x1-1)<-(x2-1),
即x2<x1<1,所以f(x1)>f(x2),
若x1,x2中一个大于1,一个小于1,不妨设x1<1,x2≥1,
则-(x1-1)<x2-1,得1<2-x1<x2,
所以f(2-x1)>f(x2),即f(x1)>f(x2),
综上有f(x1)>f(x2),即f(2-x1)>f(2-x2),
故选:A.
点评 本题考查了函数的单调性、对称性问题,考查分类讨论思想,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k>2 | B. | 0<k<2 | C. | 0<k<4 | D. | k>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b | B. | a<b | C. | a=b | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com