精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xOy中,原点为O,抛物线C的方程为x2=4y,线段AB是抛物线C的一条动弦.
(1)求抛物线C的准线方程和焦点坐标F; 
(2)若$\overrightarrow{OA}•\overrightarrow{OB}=-4$,求证:直线AB恒过定点.

分析 (1)利用抛物线C的方程为x2=4y,真假写出准线方程,焦点坐标.
(2)设直线AB方程为y=kx+b,A(x1,y1),B(x2,y2),联立直线与抛物线方程,利用韦达定理以及$\overrightarrow{OA}•\overrightarrow{OB}=-4$,求出b,得到直线方程,然后求出定点坐标.

解答 解:(1)抛物线C的方程为x2=4y,可得准线方程:y=-1焦点坐标:F(0,1)
(2)证明:设直线AB方程为y=kx+b,A(x1,y1),B(x2,y2
联立$\left\{\begin{array}{l}y=kx+b\\{x^2}=4y\end{array}\right.$得 x2-4kx-4b=0,
∴$\left\{\begin{array}{l}{x_1}+{x_2}=4k\\{x_1}{x_2}=-4b\end{array}\right.$,
$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}={x_1}{x_2}+\frac{{{x_1}^2{x_2}^2}}{16}=-4$,
∴x1x2=-8,
∴-4b=-8,b=2,
直线y=kx+2过定点(0,2).

点评 本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.当直线y=k(x-2)+4和曲线y=$\sqrt{4-{x}^{2}}$ 有公共点时,实数k的取值范围是$[{\frac{3}{4},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知过抛物线y2=8x的焦点F的直线与抛物线交于A,B两点,且|AB|=10,则|AF|•|BF|=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$a={({\frac{1}{3}})^x}$,b=x3,c=lnx,当x>2时,a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知条件p:|x-4|≤6,条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是(  )
A.(-∞,-1]B.(-∞,9]C.[1,9]D.[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.己知命题p:“a>b”是“2a>2b”的充要条件;q:?x∈R,ex<lnx,则(  )
A.¬p∨q为真命题B.p∧¬q为假命题C.p∧q为真命题D.p∨q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的终边经过点(3a,4a)(a≠0),求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若$cosα=\frac{1}{3}$,且α为第四象限角,求$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{\sqrt{1-x},x<0}\end{array}\right.$,则f(f(-3))=5.

查看答案和解析>>

同步练习册答案