精英家教网 > 高中数学 > 题目详情
5.已知过抛物线y2=8x的焦点F的直线与抛物线交于A,B两点,且|AB|=10,则|AF|•|BF|=20.

分析 由抛物线y2=8x与过其焦点(2,0)的直线方程联立,消去y整理成关于x的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,再依据抛物线的定义得出|AF|•|BF|=x1x2+x1+x2+1,由韦达定理可以求得答案.

解答 解:由题意知,抛物线y2=8x的焦点坐标为(2,0),设直线AB的方程为y=k(x-2),
与抛物线方程联立,可得k2x2-(4k2+8)x+4k2=0.
设出A(x1,y1)、B(x2,y2),
则 x1+x2=4+$\frac{8}{{k}^{2}}$,x1x2=4.
依据抛物线的定义得出|AB|=10,∴x1+x2+4=10,∴x1+x2=6,
|AF|•|BF|=(x1+2)(x2+2)=x1x2+2(x1+x2)+4=4+12+4=20,
故答案为20.

点评 本题考查直线与圆锥曲线的关系,解决问题的关键是联立抛物线方程与过其焦点的直线方程,利用韦达定理予以解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若cos($\frac{π}{8}$-α)=$\frac{1}{5}$,则cos($\frac{3π}{4}$+2α)的值为(  )
A.-$\frac{7}{8}$B.$\frac{7}{8}$C.-$\frac{23}{25}$D.$\frac{23}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点P(0,4),Q为圆x2+y2=8上的动点,当Q在圆上运动时,PQ的中点M的运动轨迹为C,直线l:y=kx与轨迹C交于A,B两点.
(1)求动点M的轨迹C的方程;
(2)设E(m,n)是线段AB上的点,且$\frac{3}{{{{|{OE}|}^2}}}=\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$,请将n表示为m的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用秦九韶算法求多项式f(x)=x5+4x4+x2+20x+16在x=-2时,v2的值为(  )
A.2B.-4C.4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点(1,1)的抛物线y=ax2的焦点坐标为(  )
A.$({-\frac{1}{4},0})$B.$({0,-\frac{1}{4}})$C.$({0,\frac{1}{4}})$D.$({\frac{1}{4},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C与双曲线y2-x2=1有共同焦点,且离心率为$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的标准方程;
(1)设A为椭圆C的下顶点,M、N为椭圆上异于A的不同两点,且直线AM与AN的斜率之积为-3
①试问M、N所在直线是否过定点?若是,求出该定点;若不是,请说明理由;
②若P点为椭圆C上异于M,N的一点,且|MP|=|NP|,求△MNP的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知长方体ABCD中,AB=4,AD=2,M为DC的中点.将△ADM沿AM折起,使得AD⊥BM.
(1)求证:平面ADM⊥平面ABCM;
(2)若点E为线段DB的中点,求点E到平面DMC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,原点为O,抛物线C的方程为x2=4y,线段AB是抛物线C的一条动弦.
(1)求抛物线C的准线方程和焦点坐标F; 
(2)若$\overrightarrow{OA}•\overrightarrow{OB}=-4$,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$\overline z=1+i$(i是虚数单位),则在复平面内,${z^-}+\frac{2}{{|{\overline z}|}}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案