精英家教网 > 高中数学 > 题目详情
20.过点(1,1)的抛物线y=ax2的焦点坐标为(  )
A.$({-\frac{1}{4},0})$B.$({0,-\frac{1}{4}})$C.$({0,\frac{1}{4}})$D.$({\frac{1}{4},0})$

分析 利用抛物线经过的点,推出a,然后化简抛物线方程为标准方程,求解焦点坐标即可.

解答 解:点(1,1)在抛物线y=ax2的图象上,可得a=1.
抛物线y=x2的焦点坐标为:(0,$\frac{1}{4}$).
故选:C.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2lnx-3x2-11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成,求整数a的最小值;
(3)若正实数x1,x2满足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,证明:x1+x2≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知tanα=$\sqrt{3},π<α<\frac{3π}{2}$,则$cos2α-sin({\frac{π}{2}+α})$=(  )
A.0B.-1C.1D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,则目标函数z=2y-x的最大值为(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(Ⅰ)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率;
(Ⅱ)若从报名的6名教师中任选2名,求选出的2名教师来自同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知过抛物线y2=8x的焦点F的直线与抛物线交于A,B两点,且|AB|=10,则|AF|•|BF|=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠ADC=90°,$AD=AB=\frac{1}{2}CD=1$,PA⊥平面ABCD,E为PD中点,且PC⊥AE.
(1)求证:PA=AD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知条件p:|x-4|≤6,条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是(  )
A.(-∞,-1]B.(-∞,9]C.[1,9]D.[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({-2,m})$,若$\overrightarrow a∥\overrightarrow b$,则m=(  )
A.-1B.-4C.4D.1

查看答案和解析>>

同步练习册答案