精英家教网 > 高中数学 > 题目详情
16.已知点P(0,4),Q为圆x2+y2=8上的动点,当Q在圆上运动时,PQ的中点M的运动轨迹为C,直线l:y=kx与轨迹C交于A,B两点.
(1)求动点M的轨迹C的方程;
(2)设E(m,n)是线段AB上的点,且$\frac{3}{{{{|{OE}|}^2}}}=\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$,请将n表示为m的函数.

分析 (1)利用代入法,求动点M的轨迹C的方程;
(2)直线l:y=kx与轨迹C联立,可得(1+k2)x2-4kx+2=0,利用韦达定理及$\frac{3}{{{{|{OE}|}^2}}}=\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$,即可得出结论.

解答 解:(1)设M(x,y),Q(x0,y0),∵P(0,4),M为PQ的中点,
∴x0=2x,y0=2y-4,代入x02+y02=8,可得动点M的轨迹C的方程x2+(y-2)2=2;
(2)直线l:y=kx与轨迹C联立,可得(1+k2)x2-4kx+2=0,
△=16k2-8(1+k2)>0,可得k<-1或k>1,
设A(x1,kx1),B(x2,kx2),n=mk,则x1+x2=$\frac{4k}{1+{k}^{2}}$,x1x2=$\frac{2}{1+{k}^{2}}$
∵$\frac{3}{{{{|{OE}|}^2}}}=\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$,
∴代入整理可得$\frac{3}{{m}^{2}}$=$\frac{1}{{{x}_{1}}^{2}}$+$\frac{1}{{{x}_{2}}^{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$=3k2-1,
∵k<-1或k>1,∴-$\frac{\sqrt{6}}{2}$<m<$\frac{\sqrt{6}}{2}$且m≠0,
∵n=mk,3n2-m2=3,E在圆C内,n>0,
∴n=$\frac{\sqrt{3{m}^{2}+9}}{3}$(-$\frac{\sqrt{6}}{2}$<m<$\frac{\sqrt{6}}{2}$且m≠0).

点评 本题考查轨迹方程,考查直线与圆的位置关系的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=sin(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{3}$),则f(x)的单调递增区间为(  )
A.(kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$),k∈ZB.(kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$),k∈Z
C.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈ZD.(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线的实轴长为2a(a>0),一个焦点为F,虚轴的一个端点为B,如果原点到直线FB的距离恰好为实半轴长,那么双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当直线y=k(x-2)+4和曲线y=$\sqrt{4-{x}^{2}}$ 有公共点时,实数k的取值范围是$[{\frac{3}{4},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知tanα=$\sqrt{3},π<α<\frac{3π}{2}$,则$cos2α-sin({\frac{π}{2}+α})$=(  )
A.0B.-1C.1D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)=\frac{1}{1-x}+ln(1+x)$的定义域是(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,则目标函数z=2y-x的最大值为(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知过抛物线y2=8x的焦点F的直线与抛物线交于A,B两点,且|AB|=10,则|AF|•|BF|=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的终边经过点(3a,4a)(a≠0),求sinα+cosα的值.

查看答案和解析>>

同步练习册答案