精英家教网 > 高中数学 > 题目详情
曲线y=x2+lnx在点(1,1)处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:求出函数的导数,求得切线的斜率,再由点斜式方程,即可得到所求切线的方程.
解答: 解:y=x2+lnx的导数为y′=2x+
1
x

则在点(1,1)处的切线斜率为k=3,
即有在点(1,1)处的切线方程为y-1=3(x-1),
即为3x-y-2=0.
故答案为:3x-y-2=0.
点评:本题考查导数的运用:求切线方程,掌握导数的几何意义和运用点斜式方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四边形ABCD中,对角线AC,BD交于点O且|
AB
|=|
AD
|=1,
OA
+
OC
=
OB
+
OD
=0
,cos∠DAB=
1
2
,求|
DC
+
BC
|与|
CD
+
BC
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3x
,定义an=f(n),bn=log3
1
2
an+1).
(1)求数列{bn}的通项公式;
(2)求满足方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2-3x-4的定义域是[-1,m],值域是[-
25
4
,0],则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,抛物线y=4-x2与直线y=3x的两交点为A、B,点P在抛物线上从A向B运动.
(1)求使△PAB的面积最大时P点的坐标(a,b).
(2)证明由抛物线与线段AB围成的图形,被直线x=a分为面积相等的两部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
a(x+2)
x
,a∈R.
(1)当a=1时,求f(x)的最小值;
(2)讨论函数g(x)=f′(x)-
x
6
零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)数列{an}前n项和Sn,4Sn=an+1(n∈N*),求a1,a2的值
(2)当{an}是等差数列,公差d,若点(an,bn)在函数f(x)=2x的图象上,(n∈N*),a1=-2,点(a8,4b3)在函数f(x)的图象上,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(ax+a-x)(a>0,a≠1).
(1)证明f(x)为奇函数;
(2)若f(x)的图象经过点(1,
5
2
),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sinxcosx-cos2x+
1
2
,在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,则f(B)的取值范围(  )
A、(-1,
1
2
]
B、(-
3
2
3
2
]
C、(-
1
2
,1]
D、(-
3
2
1
2
]

查看答案和解析>>

同步练习册答案